首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytical solutions are derived for the cylindrical bending of multilayered, linear, and anisotropic magneto-electro-elastic plates under simple-supported edge conditions. We construct the general solution in terms of a simple formalism for any homogeneous layer, from which any physical quantities can be solved for the given boundary conditions. For multilayered plates, we derive the solution in terms of the propagator matrices. A special feature of cylindrical bending, which distinguishes itself from the three-dimensional plate problem, is that the associated eigenvalues for any homogeneous layer are independent of the sinusoidal mode, and thus need to be solved only once. Typical numerical examples are also presented for a piezomagnetic plate, a two-layered piezoelectric/piezomagnetic plate, and a four layered piezoelectric/piezomagnetic plate, with different span-to-thickness ratios. In particular, the piezoelectric and piezomagnetic fields show certain interesting features, which give guidance on the development of piezoelectric/piezomagnetic thin-plate theories. Furthermore, it is shown that the variations of the elastic, electric, and magnetic quantities with thickness depend strongly upon the material property and layering, which could be useful in the analysis and design of smart composite structures with sensors/actuators.  相似文献   

2.
构造了带有补充项的双重正弦傅里叶级数通解来求解各种边界条件的多层正交各向异性矩形薄板的弯曲、振动和稳定问题.将坐标轴取在中性面上,求出用挠度表示的应力表达式,然后由横截面上每单位宽度的应力合成板的内力;再将层合板的内力代入板的平衡方程中得到板的控制方程,将多层板的物理参数折算为等价的单层板物理参数;最后联立控制方程与边界条件,求得未知量的系数并代入本文的通解中.本文的通解不需要叠加即可求解各种边界条件的板的弯曲、振动和稳定问题;现有的对于单层板的研究都可以用本文的方法拓展到多层板领域;对于复杂边界条件的板,也可以使用该通解分析.  相似文献   

3.
This study is concerned with the loss of local stability of two-layered metal plates (steel–aluminium alloy) with a crack in tension. The critical stresses corresponding to the initiation of buckling are determined. The post-critical deformation and form of stability loss are investigated. The influence of buckling on the fracture characteristics is also estimated.  相似文献   

4.
The high velocity normal impact of a three-dimensional rigid conical impactor penetrating into a two-layered ductile armor with an air gap is studied using a simplified model for an impactor–armor interaction. The goal of the study is to investigate analytically the dependence of the ballistic resistance of the armor on the order of the plates in the armor and on the width of an air gap between the plates. It is found that the ratio between the values of a single parameter depending on the material properties of the plates determines this dependence in both cases. This parameter characterizes the properties of the material of the plate; for the most widely used models of impactor–armor interaction, it is the ratio of the distortion pressure to the density of the plate.  相似文献   

5.
A uniform formulation of sensitivity analysis for beams and plates is presented in terms of generalized stresses and strains. Both physical and geometric nonlinearities can be treated within this formulation. Next, optimal design problems for stress and deflection constraints are formulated and the relevant optimality conditions are derived using the concept of a linear adjoint structure. Finally, several numerical solutions of optimal design problems of beams are presented.  相似文献   

6.
The Kakkonda geothermal reservoir, Japan, is a typical high-temperature liquid-dominated geothermal reservoir, except for its distinctive two-layered temperature structure. It has a shallow permeable reservoir of 230–260°, and a deep less permeable reservoir of 350–360°. Geology and hydrology indicate that the shallow reservoir is one to two orders of magnitude more permeable than the deep reservoir, but that the two reservoirs communicate. It has been widely assumed in engineering and scientific circles that the connection between the two reservoirs is a zero or low permeability barrier to fluid flow. We show that this hypothesis is untenable, based on both physical evidence and numerical simulation. We numerically model the evolution of the geothermal system as it heats after emplacement of an intrusion. The two-layered temperature structure is found to be a consequence of the permeability difference, i.e. the two-layered permeability structure.  相似文献   

7.
It was noted long ago [1] that the material strength theory develops both by improving computational methods and by widening the physical foundations. In the present paper, we develop a computational technique based on asymptotic methods, first of all, on the homogenization method [2, 3]. A modification of the homogenization method for plates periodic in the horizontal projection was proposed in [4], where the bending of a homogeneous plate with periodically repeating inhomogeneities on its surface was studied. A more detailed asymptotic analysis of elastic plates periodic in the horizontal projection can be found, e.g., in [5, 6]. In [6], three asymptotic approximations were considered, local problems on the periodicity cell were obtained for them, and the solvability of these problems was proved. In [7], it was shown that the techniques developed for plates periodic in the horizontal projection can also be used for laminated plates. In [7], this was illustrated by an example of asymptotic analysis of an isotropic plate symmetric with respect to the midplane.  相似文献   

8.
The results of studying the electromechanical response of thin-walled viscoelastic piezoactive elements under harmonic loading are generalized. The nonlinear electrothermoviscoelastic problem for a harmonically deformed body is formulated in a simplified form with regard for the facts that the mechanical, thermal, and electric fields are coupled, the material is physically nonlinear, and its properties depend on temperature. Classical and refined electromechanical models of single-layer and multilayer shells and plates under general and harmonic loading are reviewed. The models consider that the electromechanical characteristics of the material depend on temperature and physical and geometrical nonlinearities. Methods for solving nonlinear coupled electrothermoviscoelastic problems are discussed. Analytical and numerical solutions are given to specific quasistatic and dynamic electrothermoviscoelastic problems for thin-walled elements such as rods, plates, and shells of various shapes under harmonic electric loading. The effect of dissipation, the temperature dependence of the material properties, and physical and geometrical nonlinearities on the harmonic and parametric vibrations and stability of piezoelectric elements is studied  相似文献   

9.
The paper presents a review of scientific studies on development, of the classical and refined models of the thermomechanical behavior of thin-walled single- and multilayer viscoelastic elements. Allowance is made for the temperature dependence of the properties of the material and physical and geometrical nonlinearities in the case of monoharmonic strain as one of the most typical types of deformation. Methods of solution of nonlinear connected problems of thermoviscoelasticity and results of solution of some specific problems on vibrations and heating-up of thin-walled rods, plates, and shells in quasistatic and dynamic formulations are discussed. A number of thermomechanical effects are noted. They are due to the coupling of mechanical and thermal fields and physical and geometrical nonlinearities, taken into account either separately or jointly. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated, from Prikladnaya Mekhanika, Vol. 36, No. 2, pp. 39–62, February, 2000.  相似文献   

10.
Yuli  Gao  Yizhong  Lu 《Acta Mechanica Sinica》1986,2(2):158-168
Crack problems for isotropic/orthotropic two-layered strips have been investigated. A system of two singular integral equations can be derived by using Fourier integral transformation and boundary conditions of crack problems. After stress singularities at crack tips or other special points are determined for internal and edge cracks, and for cracks terminating at and going through the interface, the system of singular integral equations is solved numerically by Gauss-Jacobi or Gauss-Chebyshev integration formulas for stress intensity factors at the tips and other singular points of cracks. Finally, possible crack growth behavior for cracks approaching and going through the interface is discussed.  相似文献   

11.
Summary Steady thermal stresses in a plate made of a functionally gradient material (FGM) are analyzed theoretically and calculated numerically. An FGM plate composed of PSZ and Ti-6Al-4V is examined, and the temperature dependence of the material properties is considered. A local safety factor is used for evaluation of the FGM's strength. It is assumed that top and bottom surfaces of the plate are heated and kept at constant thermal boundary conditions. The pairs of the surface temperatures, for which the minimum local safety factor can be of more than one, are obtained as available temperature regions. The temperature dependence of the material properties diminishes, available temperature region as compared with that for an FGM plate without it. The available temperature region of the FGM plate is wider than that of the two-layered plate, especially for the surface temperatures which are high at the ceramic surface and low at the metal side. The influence of different mechanical boundary conditions is examined, and available temperature regions are found to be different, depending on the mechanical boundary conditions. The influence of the intermediate composition on the thermal stress reduction is also investigated in detail for the surface temperatures which are kept at 1300 K at the ceramic surface and 300K at the metal side. Appropriate intermediate composition of the FGM plate can yield the local safety factor of one or more for the four mechanical boundary conditions at once. For the two-layered plate there does not exist, however, any appropriate pair of metal and ceramic thicknesses which would yield the local safety factor of one or more for the four mechanical boundary conditions at once. The influence of the intermediate composition on the maximization of the minimum stress ratio depends on the mechanical boundary conditions. Finally, the optimal FGM plates are determined.  相似文献   

12.
Static and dynamic problems for the elastic plates and membranes periodically perforated by holes of different shapes are solved using the combination of the singular perturbation technique and the multi-scale asymptotic homogenization method. The problems of bending and vibration of perforated plates are considered. Using the asymptotic homogenization method the original boundary-value problems are reduced to the combination of two types of problems. First one is a recurrent system of unit cell problems with the conditions of periodic continuation. And the second problem is a homogenized boundary-value problem for the entire domain, characterized by the constant effective coefficients obtained from the solution of the unit cell problems. In the present paper the perforated plates with large holes are considered, and the singular perturbation method is used to solve the pertinent unit cell problems. Matching of limiting solutions for small and large holes using the two-point Padé approximants is also accomplished, and the analytical expressions for the effective stiffnesses of perforated plates with holes of arbitrary sizes are obtained.  相似文献   

13.
Ion slip in a time-varying Hartmann flow of a conducting incompressible non-Newtonian viscoelastic fluid between two parallel horizontal insulating porous plates is studied with allowance for heat transfer. A uniform and constant pressure gradient is applied in the axial direction. An external uniform magnetic field and uniform suction and injection through the surface of the plates are applied in the normal direction. The two plates are maintained at different but constant temperatures; the Joule and viscous dissipations are taken into consideration. Numerical solutions for the governing momentum and energy equations are obtained with the use of finite differences, and the effect of various physical parameters on both the velocity and temperature fields is discussed.  相似文献   

14.
A numerical solution to elastic-equilibrium problems for nonthin plates is proposed. The solution is obtained by using the curvilinear-mesh method in combination with Vekua’s method. The efficiency (rapid convergence and accuracy) of this approach is demonstrated by solving test problems for thick plates that can also be solved exactly or approximately by other methods. A numerical solution is obtained to the bending problem for orthotropic nonthin plates of constant and varying thickness __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 3, pp. 119–126, March 2006.  相似文献   

15.
An efficient method is developed to solve the free-vibration problems for arbitrarily shaped orthotropic multilayer plates in a refined formulation. The method is based on the R-function and Ritz methods. Sequences of coordinate functions satisfying kinematic boundary conditions are constructed in an analytic form. The method is used to solve the vibration problem for multilayer square and arbitrarily shaped plates. The results obtained for square plates are analyzed. A comparison of these results with those available in the literature demonstrates the efficiency of the method __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 1, pp. 119–125, January 2006.  相似文献   

16.
An integrated mathematic model and an efficient algorithm on the dynamical behavior of homogeneous viscoelastic corrugated circular plates with shallow sinusoidal corrugations are suggested. Based on the nonlinear bending theory of thin shallow shells, a set of integro-partial differential equations governing the motion of the plates is established from extended Hamilton’s principle. The material behavior is given in terms of the Boltzmann superposition principle. The variational method is applied following an assumed spatial mode to simplify the governing equations to a nonlinear integro-differential variation of the Duffing equation in the temporal domain, which is further reduced to an autonomic system with four coupled first-order ordinary differential equation by introducing an auxiliary variable. These measurements make the numerical simulation performs easily. The classical tools of nonlinear dynamics, such as Poincaré map, phase portrait, Lyapunov exponent, and bifurcation diagrams, are illustrated. The influences of geometric and physical parameters of the plate on its dynamic characteristics are examined. The present mathematic model can easily be used to the similar problems related to other dynamical system for viscoelastic thin plates and shallow shells.  相似文献   

17.
The Monte Carlo method [1, 2] is used to solve the linearized Boltzmann equation for the problem of heat transfer between parallel plates with a wall temperature jump (Knudsen layer flow). The linear Couette problem can be separated into two problems: the problem of pure shear and the problem of heat transfer between two parallel plates. The Knudsen layer problem is also linear [3] and, like the Couette problem, can be separated into the velocity slip and temperature jump problems. The problems of pure shear and velocity slip have been examined in [2].The temperature jump problem was examined in [4] for a model Boltzmann equation. For the linearized Boltzmann equation the problems noted above have been solved either by expanding the distribution function in orthogonal polynomials [5–7], which yields satisfactory results for small Knudsen numbers, or by the method of moments, with an approximation for the distribution function selected from physical considerations in the form of polynomials [8–10]. The solution presented below does not require any assumptions on the form of the distribution function.The concrete calculations were made for a molecular model that we call the Maxwell sphere model. It is assumed that the molecules collide like hard elastic spheres whose sections are inversely proportional to the relative velocity of the colliding molecules. A gas of these molecules is close to Maxwellian or to a gas consisting of pseudo-Maxwell molecules [3].  相似文献   

18.
ABSTRACT

Application of the Galerkin method to various fluid and structural mechanics problems that are governed by a single linear or nonlinear differential equation is well known [1-5]. Recently, the method has been extended to finite element formulations [6-10], In this paper the suitability of the Galerkin method for solution of large deflection problems of plates is studied. The method is first applied to investigate large deflection behavior of clamped isotropic plates on elastic foundations. After validity of the method is established, it is then extended to analyze problems of large deflection of clamped skew sandwich plates, both with and without elastic foundations. The plates are considered to be subjected to uniformly distributed loads. The governing differential equations for the sandwich plate in terms of displacements in Cartesian coordinates are first established and then transformed into skew coordinates. The nonlinear differential equations of the plates are then transformed into nonlinear algebraic equations, using the Galerkin method. These equations are solved using a Newton-Raphson iterative procedure. The parameters considered herein for large deflection behavior of skew sandwich plates are the aspect ratio of the plate, Poisson's ratio, skew angle, shearing stiffnesses of the core, and foundation moduli. Numerical results are presented for skew sandwich plates for various skew angles and aspect ratios. Simplicity and quick convergence are the advantages of the method, in comparison with other much more laborious numerical methods that require extensive computer facilities.  相似文献   

19.
A number of approaches to the solution of stress problems for anisotropic inhomogeneous shells in the classical formulation are discussed. A review is made of approaches to the solution of one- and two-dimensional static problems for thin shells with variable parameters and to the solution of stress–strain problems for anisotropic shells of revolution under axisymmetric and non-axisymmetric loading, shallow convexo-convex shells, noncircular cylindrical shells, plates of various shapes, and shells of complex geometry  相似文献   

20.
This paper describes a semi-analytic approach to problems involving rectangular elastic plates of shallow draft floating on water. Specifically, two problems are considered: the scattering of plane monochromatic incident waves by a single elastic plate and the propagation/attenuation of waves through a periodic rectangular arrangement of plates. The approach combines Fourier methods with Rayleigh–Ritz methods for free modes of rectangular plates which reduces each problem to an algebraic system of equations which are numerically accurate and efficient to compute. A selection of results are given to illustrate the work. The approach can be applied to many problems in hydroelasticity including the seakeeping of large flat-bottomed marine vessels, deflections in very large floating structures such as offshore airports and wave propagation through areas of broken sea ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号