首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, LU, which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, LCH, or by a constant turbulence on the centerline, with length LCT. The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has a length LCH which increases from LCH = H at Re = 35,300 to LCH = 45H at Re = 2200. The PIV measurements on the centerline of the jet show that turbulence remains constant at the level of the exit for a length, LCT, which increases from LCT = H at Re = 35,300 to LCT = 45H at Re = 2200. The PIV measurements show that velocity remains constant at the exit level for a length, LU, which increases from LU = H at Re = 35,300 to LU = 6H at Re = 2200 and is called undisturbed region of flow. In turbulent flow the length LU is almost equal to the lengths of the regions of constant height, LCH, and constant turbulence, LCT. In laminar flow, Re = 2200, the length of the undisturbed region of flow, LU, is greater than the lengths of the regions of constant height and turbulence, LCT = LCH = 45H. The average PIV and HFA velocity measurements confirm that the length of potential core, LP, increases from LP = 45H at Re = 35,300 to LP = 78H at Re = 2200, and are compared to the previous experimental and theoretical results of the literature in the zone of mixing fluid and in the fully developed region with a good agreement.  相似文献   

2.
A detailed experimental study is performed on the separated flow structures around a low aspect-ratio circular cylinder (pin-fin) in a practical configuration of liquid cooling channel. Distinctive features of the present arrangement are the confinement of the cylinder at both ends, water flow at low Reynolds numbers (Re = 800, 1800, 2800), very high core flow turbulence and undeveloped boundary layers at the position of the obstacle. The horseshoe vortex system at the junctions between the cylinder and the confining walls and the near wake region behind the obstacle are deeply investigated by means of Particle Image Velocimetry (PIV). Upstream of the cylinder, the horseshoe vortex system turns out to be perturbed by vorticity bursts from the incoming boundary layers, leading to aperiodical vortex oscillations at Re = 800 or to break-away and secondary vorticity eruptions at the higher Reynolds numbers. The flow structures in the near wake show a complex three-dimensional behaviour associated with a peculiar mechanism of spanwise mass transport. High levels of free-stream turbulence trigger an early instabilization of the shear layers and strong Bloor–Gerrard vortices are observed even at Re = 800. Coalescence of these vortices and intense spanwise flow inhibit the alternate primary vortex shedding for time periods whose length and frequency increase as the Reynolds number is reduced. The inhibition of alternate vortex shedding for long time periods is finally related to the very large wake characteristic lengths and to the low velocity fluctuations observed especially at the lowest Reynolds number.  相似文献   

3.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

4.
Fully-developed turbulent flow in a concentric annulus, r1/r2 = 0.5, Reh = 12,500, with the outer wall rotating at a range of rotation rates N = Uθ,wall/Ub from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re2  N2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change.  相似文献   

5.
A computational study of heat transfer from rectangular cylinders is carried out. Rectangular cylinders are distinguished based on the ratio of the length of streamwise face to the height of the cross-stream face (side ratio, R). The simulations were performed to understand the heat transfer in a flow field comprising separation, reattachment, vortex shedding and stagnation. The Partially-Averaged Navier–Stokes (PANS) modeling approach is used to solve the turbulent flow physics associated and the wall resolve approach is used for the near wall treatment because of the flow separation involved. The simulations were performed using a finite volume based opensource software, OpenFOAM, at Reynolds number (Re) = 22,000 for rectangular cylinder at constant temperature kept in an air stream. Two critical side ratios were obtained, R = 0.62 and 3.0. At R = 0.62, the maximum value of the drag coefficient (Cd) = 2.681 was observed which gradually reduced by 54% at R = 4.0. The base pressure coefficient and global Nusselt number also attained the maximum value at R = 0.62 and from R = 2.5 to 3.0 a sharp discontinuous increase by 140% in the Strouhal number was observed. At R = 0.62, it was observed that the separated flow reattaches at the trailing edge after rolling over the side face and therefore increases the overall Nusselt number. The phase averaging was also performed to analyze the unsteady behavior of heat transfer.  相似文献   

6.
We report on large-eddy simulations (LES) of fully-developed asymmetric flow in a duct of a rectangular cross-section in which square-sectioned, equally-spaced ribs oriented perpendicular to the flow direction, were mounted on one of the walls. The configuration mimics a passage of internal cooling of a gas-turbine blade. The duct flow at a Reynolds number Re = 15,000 (based on hydraulic diameter Dh and bulk flow velocity U0) was subjected to clock-wise (stabilising) and anti-clock-wise (destabilising) orthogonal rotation at a moderate rotational number Ro = ΩDh/U0 = 0.3, where Ω is the angular velocity. The LES results reproduced well the available experimental results of Coletti et al. (2011) (in the mid-plane adjacent to the ribbed wall) and provided insight into the whole duct complementing the reference PIV measurement. We analyzed the effects of stabilising and destabilising rotation on the flow, vortical structures and turbulence statistics by comparison with the non-rotating case. The analysis includes the identification of depth of penetration of the rib-effects into the bulk flow, influence of flow three-dimensionality and the role of secondary motions, all shown to be strongly affected by the rotation and its direction.  相似文献   

7.
The mean wake of a surface-mounted finite-height square prism was studied experimentally in a low-speed wind tunnel to explore the combined effects of incidence angle (α) and aspect ratio (AR). Measurements of the mean wake velocity field were made with a seven-hole pressure probe for finite square prisms of AR = 9, 7, 5 and 3, at a Reynolds number of Re = 3.7 × 104, for incidence angles from α = 0° to 45°. The relative thickness of the boundary layer on the ground plane, compared to the prism width, was δ/D = 1.5. As the incidence angle increases from α = 0° to 15°, the mean recirculation zone shortens and the mean wake shifts in the direction opposite to that of the mean lift force. The downwash is also deflected to this side of the wake and the mean streamwise vortex structures in the upper part of the wake become strongly asymmetric. The shortest mean recirculation zone, and the greatest asymmetry in the mean wake, is found at the critical incidence angle of αcritical  15°. As the incidence angle increases from α = 15° to 45°, the mean recirculation zone lengthens and the mean streamwise vortex structures regain their symmetry. These vortices also elongate in the wall-normal direction and become contiguous with the horseshoe vortex trailing arms. The mean wake of the prism of AR = 3 has some differences, such as an absence of induced streamwise vorticity near the ground plane, which support its classification as lying below the critical aspect ratio for the present flow conditions.  相似文献   

8.
This paper presents some results of URANS study of flow and heat transfer in a matrix of wall-bounded 8 × 8 round pins, mimicking internal cooling passage of gas-turbine blades. The focus is on flow unsteadiness, its role in heat transfer and the capabilities of RANS models to reproduce these features in a set-up of industrial relevance. The results for two Reynolds numbers, 10 000 and 30 000, are compared with the available experiments and LES. It is shown that the elliptic-relaxation eddy-viscosity model, ζ-f captures vortex shedding and the consequent gross effects on the flow development. However, a closer look at flow details reveals discrepancies, especially around the first three pin rows, where the unsteadiness reproduced by URANS shows much weaker amplitudes as compared with LES. Only further downstream the succession of forcing from a series of pins produced unsteadiness akin to those captured by LES. The comparison suggests that smaller structures undetected by URANS need to be resolved to capture properly the separation and wake characteristics of each row. At Re = 10 000, the average endwall Nusselt number agrees well with the LES, both being about 20% lower than in the experiment. For Re = 30 000 the URANS Nusselt is within 10% of the experimental value.  相似文献   

9.
The flow above the free end of a surface-mounted finite-height cylinder was studied in a low-speed wind tunnel using particle image velocimetry (PIV). Velocity measurements were made in vertical and horizontal measurement planes above the free end of finite cylinders of aspect ratios AR = 9, 7, 5 and 3, at a Reynolds number of Re = 4.2 × 104. The relative thickness of the boundary layer on the ground plane was δ/D = 1.7. Flow separating from the leading edge formed a prominent recirculation zone on the free-end surface. The legs of the mean arch vortex contained within the recirculation zone terminate on the free-end surface on either side of the centreline. Separated flow from the leading edge attaches onto the upper surface of the cylinder along a prominent attachment line. Local separation downstream of the leading edge is also induced by the reverse flow and arch vortex circulation within the recirculation zone. As the cylinder aspect ratio is lowered from AR = 9 to AR = 3, the thickness of the recirculation zone increases, the arch vortex centre moves downstream and higher above the free-end surface, the attachment position moves downstream, and the termination points of the arch vortex move upstream. A lowering of the aspect ratio therefore results in accentuated curvature of the arch vortex line. Changes in aspect ratio also influence the vorticity generation in the near-wake region and the shape of the attachment line.  相似文献   

10.
Influence of wall proximity on characteristics of the wake behind a two-dimensional square cylinder was experimentally studied in the present work. A low-speed recirculation water channel was established for the experiment; the Reynolds number based on the free-stream velocity and cylinder width (D) was kept at ReD = 2250. Four cases with different gap width, e.g., G/D = 0.1, 0.2, 0.4 and 0.8, were chosen for comparison. Two experimental techniques, e.g., the standard PIV with high image-density CCD camera and TR-PIV with a high-speed camera were employed in measuring the wake field, enabling a comprehensive view of the time-averaged wake pattern at high spatial resolution and the instantaneous flow field at high temporal resolution, respectively. For the four cases, the difference in spatial characteristics of the wake in the vicinity of the plane wall was analyzed in terms of the time-averaged quantities measured by the standard PIV, e.g., the streamline pattern, the vector field, the streamwise velocity fluctuation intensity and the reverse-flow intermittency. The proper orthogonal decomposition (POD) method was extensively used to decompose the TR-PIV measurements, giving a close-up view of the energetic POD modes buried in the wake. The low-order flow model of the wake at G/D = 0.8 and 0.4 was constructed by using the linear combination of the first two POD modes and the time-mean flow field, which reflected well the vortex shedding process in the sense of the phase-dependent patterns. The intermittent appearance of the weakly separated region near the wall was found at G/D = 0.4. On going from G/D = 0.8 to 0.4, the remarkable variation of the instantaneous wake in the longitudinal direction confirmed that the wall constraint stretches the vortices in the plane of the wall and transfers the energy to the longitudinal component at the expense of the lateral one.  相似文献   

11.
This paper represents the results of an experimental study on the flow structure around a single sphere and three spheres in an equilateral-triangular arrangement. Flow field measurements were performed using a Particle Image Velocimetry (PIV) technique and dye visualization in an open water channel for a Reynolds number of Re = 5 × 103 based on the sphere diameter. The distributions and flow features at the critical locations of the contours of the velocity fluctuations, the patterns of sectional streamlines, the vorticity contours, the turbulent kinetic energy, the Reynolds stress correlations and shedding frequency are discussed. The gap ratios (G/D) of the three spheres were varied in the range of 1.0  G/D  2.5 where G was the distance between the sphere centers, and D was the sphere diameter which was taken as 30 mm. Due to the interference of the shedding shear layers and the wakes, more complex features of the flow patterns can be found in the wake region of the two downstream spheres behind the leading sphere. For G/D = 1.25, a jet-like flow around the leading sphere through the gap between the two downstream spheres occurred, which significantly enhanced the wake region. It was observed that a continuous flow development involving shearing phenomena and the interactions of shedding vortices caused a high rate of fluctuations over the whole flow field although most of the time-averaged flow patterns were almost symmetric about the two downstream spheres.  相似文献   

12.
In this study, a HMW anionic co-polymer of 40:60 wt/wt NaAMPS/acrylamide was used as a drag reducing polymer (DRP) for oil–water flow in a horizontal 25.4 mm ID acrylic pipe. The effect of polymer concentration in the master solution and after injection in the main water stream, oil and water velocities, and pipe length on drag reduction (DR) was investigated. The injected polymer had a noticeable effect on flow patterns and their transitions. Stratified and dual continuous flows extended to higher superficial oil velocities while annular flow changed to dual continuous flow. The results showed that as low as 2 ppm polymer concentration was sufficient to create a significant drag reduction across the pipe. DR was found to increase with polymer concentration increased and reached maximum plateau value at around 10 ppm. The results showed that the drag reduction effect tends to increase as superficial water velocity increased and eventually reached a plateau at Usw of around 1.3 m/s. At Usw > 1.0 m/s, the drag reduction decreased as Uso increased while at lower water velocities, drag reduction is fluctuating with respect to Uso. A maximum DR of about 60% was achieved at Uso = 0.14 m/s while only 45% was obtained at Uso = 0.52 m/s. The effectiveness of the DRP was found to be independent of the polymer concentration in the master solution and to some extent pipe length. The friction factor correlation proposed by Al-Sarkhi et al. (2011) for horizontal flow of oil–water using DRPs was found to underpredict the present experimental pressure gradient data.  相似文献   

13.
The wake dynamics of a rotating sphere with prescribed rotation axis angles are quantitatively analysed by carrying out numerical simulations at Reynolds numbers of Re = 100, 250 and 300, non-dimensional rotational rates Ω1 = 0–1 and rotation axis angles α = 0, π/6, π/3 and π/2 measured from the free stream axis. These parameters are the same as those in an earlier study (Poon et al., 2010, Int. J. Heat Fluid Flow) where the instantaneous flow structures were discussed qualitatively. This study extends the findings of the earlier study by employing phase diagrams (CLx, CLy) and (CD, CL) to provide a quantitative analysis of the time-dependent behaviour of the flow structures. At Re = 300 and Ω1 = 0.05, the phase diagrams (CLx, CLy) show ‘saw tooth’ patterns for both α = 0 and π/6. The ‘saw tooth’ pattern indicates that the flow structures comprise a higher frequency oscillation component at a Reynolds number of 300 which is not observed until Re  800 for a stationary sphere. This ‘saw tooth’ pattern disappears as Ω1 increases. The employment of the phase diagrams also reveals that different flow structures induce different oscillation amplitudes on both lateral force coefficients. With the exception of the vortices formed from a shear layer instability, all other flow regimes show larger fluctuations in CL than CD.  相似文献   

14.
A downward flow of glass bead particles in a vertical pipe is investigated using a two-component LDV/PDPA for a range of Re (6400 < Re < 24,000) and a constant particle loading (m = 0.7). Two particle sizes of 70 and 200 μm are considered in the present work. For the 70 μm particles, the presence of the particles dampens the gas-phase turbulence intensity at the lowest value of Re investigated (8300) compared with the single-phase flow at the same Re. As Re increases, the gas turbulence increases, and for Re > 13,800 the gas turbulence is enhanced compared with the single-phase flow at the same Re. For the 200 μm particles, the intensity also increases with Re and is enhanced for all values of Re investigated, except at the lowest value of Re investigated (6400). At this value, the gas turbulence is equal to that of single-phase flow at the same Re. The observed trend in the gas-phase turbulence modulation with Re is proposed to be due to the change in the segregation patterns and in the average volume fractions of the particles with increasing Re. More importantly, the present experimental results suggest that, consideration of either the gas and particle characteristic length scales or the particle Reynolds number solely is insufficient to predict gas-phase turbulence modulation in gas–particle flows.  相似文献   

15.
Vortex structures and heat transfer enhancement mechanism of turbulent flow over a staggered array of dimples in a narrow channel have been investigated using Large Eddy Simulation (LES), Laser Doppler Velocimetry (LDV) and pressure measurements for Reynolds numbers ReH = 6521 and ReH = 13,042.The flow and temperature fields are calculated by LES using dynamic mixed model applied both for the velocity and temperature. Simulations have been validated with experimental data obtained for smooth and dimpled channels and empiric correlations. The flow structures determined by LES inside the dimple are chaotic and consist of small eddies with a broad range of scales where coherent structures are hardly to detect. Proper Orthogonal Decomposition (POD) method is applied on resolved LES fields of pressure and velocity to identify spatial–temporal structures hidden in the random fluctuations. For both Reynolds numbers it was found that the dimple package with a depth h to diameter D ratio of h/D = 0.26 provides the maximum thermo-hydraulic performance. The heat transfer rate could be enhanced up to 201% compared to a smooth channel.  相似文献   

16.
The generation of control moments without moving control surfaces is of great practical importance. Following a successful flight demonstration of creating roll motion without ailerons using differential, lift oriented, flow control the current study is a first step towards generating yawing motion via differential flow controlled drag.A wind tunnel study was conducted on a 21% thick Glauert type airfoil. The upper surface flow is partially separated from the two-thirds chord location and downstream on this airfoil at all incidence angles. An array of mass-less Piezo-fluidic actuators, located at x/c = 0.65, are capable of fully reattaching the flow in a gradual, controlled manner. The actuators are individually operated such that the boundary layer could be controlled in a 3D fashion.Several concepts for creating yaw motion without moving control surface are examined. The ultimate goal is to generate the same lift on both wings, while decreasing the drag on one wing and increasing the drag on the other, therefore creating a yawing moment. Decreased drag is created by effective part-span separation delay while increased drag can be created by enhanced generation of vortex shedding or by highly localized 3D actuation.Detailed measurements of 3D surface pressure distributions and wake data with three velocity and streamwise vorticity components are presented and discussed along with surface flow visualization images. The data provide evidence that yawing moments can be generated with AFC.  相似文献   

17.
Flow instability in baffled channel flow, where thin baffles are mounted on both channel walls periodically in the direction of the main flow, has been numerically investigated. The geometry considered here can be regarded as a simple model for finned heat exchangers. The aim of this investigation is to understand how baffle interval (L) and Reynolds number (Re) influence the flow instability. With a fixed baffle length of one quarter of channel height (H), ratios of baffle interval to channel height (RB = L/H) between 1 and 4 are considered. The critical Reynolds number of the primary instability, a Hopf bifurcation from steady flow to time-periodic flow, turned out to be minimum when RB = 3.08. The friction factor (f) is strongly correlated with the critical Reynolds number for RB  2.5. For the particular cases of RB = 1.456 and RB = 1.0, we performed Floquet stability analysis in order to study the secondary instability through which time-periodic two-dimensional flow bifurcates into three-dimensional flow. The results obtained in this investigation are in good agreement with those computed from full simulations, and shed light on understanding and controlling flow characteristics in a finned heat exchanger, quite beneficial to its design.  相似文献   

18.
Fluidized bed agglomeration is an important and challenging problem for thermal cracking in fluid cokers. A low coker temperature can be problematic because the bitumen is injected into the fluidized bed with a different viscosity, resulting in formation of agglomerates of varying sizes, which slows the cracking reactions. In the present study, the bed material agglomeration process during nozzle injection of multiviscosity liquid was investigated in a fluidized bed operated at different mass ratios of the atomization gas to the liquid jets (GLR = 1%–3.5%) and gas velocities (3.9Umf and 5.9Umf) based on a conductance method using a water–sand system to simulate the hot bitumen–coke system at room temperature. During the tests of liquid-jet dispersion throughout the bed, different agglomeration stages are observed at both gas velocities. The critical amount of tert-butanol in the liquid jets that could lead to severe agglomeration of the bed materials (poor fluidization) at GLR = 1% is about 10 wt% at the low fluidizing gas velocity (3.9Umf) and 18 wt% at the high gas velocity (5.9Umf). This study provides a new approach for on-line monitoring of bed agglomeration during liquid injection to guarantee perfect contact between the atomized liquid and the bed particles.  相似文献   

19.
The flow field over a low aspect ratio (AR) circular pillar (L/D = 1.5) in a microchannel was studied experimentally. Microparticle image velocimetry (μPIV) was employed to quantify flow parameters such as flow field, spanwise vorticity, and turbulent kinetic energy (TKE) in the microchannel. Flow regimes of cylinder-diameter-based Reynolds number at 100  ReD  700 (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated at the microscale. In addition, active flow control (AFC), via a steady control jet (issued from the pillar itself in the downstream direction), was implemented to induce favorable disturbances to the flow in order to alter the flow field, promote turbulence, and increase mixing. Together with passive flow control (i.e., a circular pillar), turbulent kinetic energy was significantly increased in a controllable manner throughout the flow field.  相似文献   

20.
This paper documents the numerical investigation of the effects of non-uniform magnetic fields, i.e. magnetic-ribs, on a liquid–metal flowing through a two-dimensional channel. The magnetic ribs are physically represented by electric currents flowing underneath the channel walls. The Lorentz forces generated by the magnetic ribs alter the flow field and, as consequence, the convective heat transfer and wall shear stress. The dimensionless numbers characterizing a liquid–metal flow through a magnetic field are the Reynolds (Re) and the Stuart (N) numbers. The latter provides the ratio of the Lorentz forces and the inertial forces. A liquid–metal flow in a laminar regime has been simulated in the absence of a magnetic field (ReH = 1000, N = 0), and in two different magnetic ribs configurations for increasing values of the Stuart number (ReH = 1000, N equal to 0.5, 2 and 5). The analysis of the resulting velocity, temperature and force fields has revealed the heat transport phenomena governing these magneto-hydro-dynamic flows. Moreover, it has been noticed that, by increasing the strength of the magnetic field, the convective heat transfer increases with local Nusselt numbers that are as much 27.0% larger if compared to those evaluated in the absence of the magnetic field. Such a convective heat transfer enhancement has been obtained at expenses of the pressure drop, which increases more than twice with respect to the non-magnetic case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号