首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A grid-embedding technique for the solution of two-dimensional incompressible flows governed by the Navier-Stokes equations is presented. A finite volume method with collocated primitive variables is employed to ensure conservation at the interfaces of embedding grids as well as global conservation. The discretized equations are solved simultaneously for the whole domain, providing a strong coupling between regions of different refinement. The formulation presented herein is applicable to uniform or non-uniform Cartesian meshes. The method was applied to the solution of two scalar transport equations, to cavity flows driven by body and shear forces and to a sudden plane contraction flow. The numerical predictions are compared with the exact solutions when available and with experimental data. The results show that neither the convergence rate nor the stability of the method is affected by the presence of embedded grids. Embedded grids provide a better distribution of grid nodes over the computational domain and consequently the solution accuracy was improved. The grid-embedding technique proved also that significant savings in computing time could be achieved.  相似文献   

2.
An adaptive grid solution procedure is developed for incompressible flow problems in which grid refinement based on an equidistribution law is performed in high-error-estimate regions that are flagged from a preliminary coarse grid solution. Solutions on the locally refined and equidistributed meshes are obtained using boundary conditions interpolated from the preliminary coarse grid solution, and solutions on both the refined and coarse grid regions are successively improved using a multigrid approach. For this purpose, suitable correction terms for the coarse grid equations are derived for all variables in the flagged regions. This procedure with Local Adaptation, Multigridding and Equidistribution (LAME) concepts is applied to various flow problems to demonstrate the accuracy improvements obtained using this method.  相似文献   

3.
The object of this study is to investigate two derivative free optimization techniques, i.e. Newton‐based method and an evolutionary method for shape optimization of flow geometry problems. The approaches are compared quantitatively with respect to efficiency and quality by using the minimization of the pressure drop of a pipe conjunction which can be considered as a representative test case for a practical three‐dimensional flow configuration. The comparison is performed by using CONDOR representing derivative free Newton‐based techniques and SIMPLIFIED NSGA‐II as the representative of evolutionary methods (EM). For the shape variation the computational grid employed by the flow solver is deformed. To do this, the displacement fields are scaled by design variables and added to the initial grid configuration. The displacement vectors are calculated once before the optimization procedure by means of a free form deformation (FFD) technique. The simulation tool employed is a parallel multi‐grid flow solver, which uses a fully conservative finite‐volume method for the solution of the incompressible Navier–Stokes equations on a non‐staggered, cell‐centred grid arrangement. For the coupling of pressure and velocity a pressure‐correction approach of SIMPLE type is used. The possibility of parallel computing and a multi‐grid technique allow for a high numerical efficiency. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, a parallel implementation of gas-kinetic Bhatnagar–Gross–Krook method on two-dimensional hybrid grids is presented. Boundary layer regions in wall bounded viscous flows are discretised with quadrilateral grid cells stretched in the direction normal to the solid surface while the rest of the flow domain is discretised by triangular cells. The parallel solution algorithm on hybrid grids is based on the domain decomposition using METIS, a graph partitioning software. The flow solutions obtained in parallel significantly improve the computation time, a significant deficiency of gas-kinetic methods. Several validation test cases presented show the accuracy and robustness of the method developed.  相似文献   

5.
The efficiency and accuracy of grid movement methods for a typical fluid–structure interaction configuration is investigated. The set-up consists of a thin elastic structure including one rotational degree of freedom fixed in a laminar channel flow. Two different cases are considered, i.e., small and large structural deformations. The comparison is carried out by using two algebraic methods, linear and transfinite interpolation, and two elliptic solution strategies also providing boundary orthogonality. A reference solution is obtained from a mixed approach. The evaluation of efficiency and accuracy is based on computation times, number of coupling steps, structural displacements and swiveling frequencies. All mesh movement techniques are employed in the frame of a partitioned solution procedure involving the block-structured finite-volume flow solver FASTEST, the finite-element structural solver FEAP, and the coupling interface MpCCI.  相似文献   

6.
IntroductionWeconsiderthefollowingnonlinearBurgers’equation : u t u u x=ε 2 u x2 ,   0 0 ,( 1 )withtheinitialandtheboundaryconditions     u(x,0 ) =f(x) ,   0 相似文献   

7.
We have developed an accurate and highly efficient method for upscaling and simulation of immiscible displacements in three-dimensional (3D) heterogeneous reservoirs, which is an extension of the technique that we developed previously for 2D systems. The method utilizes wavelet transformations (WTs) to upscale the geological model of a reservoir, based on the spatial distribution of the single-phase permeabilities and the locations of the wells in the reservoir. It generates a non-uniform grid in which the resolved structure of the fine grid around the wells, as well as in the high-permeability sectors, are preserved, but the rest of the grid is upscaled. A robust uplayering procedure is used to reduce the number of the layers, and the WTs are used to upscale each layer areally. To demonstrate the method’s accuracy and efficiency, we have applied it to the geological model of a highly heterogeneous reservoir put forward in the tenth Society of Petroleum Engineers comparative solution project (the SPE-10 model), and carried out simulation of waterflooding in the upscaled model. Various upscaling scenarios were examined, and although some of them resulted in efficient simulations and accurate predictions, the results when non-uniform upscaling is used based on the WT technique are in excellent agreement with the solution of the same problem in the fine grid of the SPE-10 model. Most importantly, the speed-up factors that we obtain are several orders of magnitude. Hence, the method renders it unnecessary to use massively parallel computations for such problems.  相似文献   

8.
We demonstrate how efficient r-adapted grids for the prediction of tropical cyclone (TC) tracks can be constructed with the help of goal-oriented error estimates. The binary interaction of TCs in a barotropic model is used as a test case. We perform a linear sensitivity analysis for this problem to evaluate the contribution of each grid cell to an error measure correlated with the cyclone positions. This information allows us to estimate the local grid resolution required to minimize the TC position error. An algorithm involving the solution of a Poisson problem is employed to compute how grid points should be moved such that the desired local resolution is achieved. A hexagonal shallow-water version of the next-generation numerical weather prediction and climate model ICON is used to perform model runs on these adapted grids. The results show that for adequately chosen grid adaptation parameters, the accuracy of the track prediction can be maintained even when a coarser grid is used in regions for which the estimated error contribution is low. Accurate track predictions are obtained only when a grid with high resolution consisting of cells with nearly constant size and regular shape covers the part of the domain where the estimated error contribution is large. The number of grid points required to achieve a certain accuracy in the track prediction can be decreased substantially with our approach.  相似文献   

9.
Most of the turbulence models in the literature contain simplified assumptions which make them computationally inexpensive but of limited accuracy for the solution of separated turbulent flows. Dramatic improvements in computer processing speed and parallel processing make it possible to use more complete models, such as Reynolds Stress Models, for separated turbulent flow simulations, which is the focus of this work. The Reynolds Stress Model consists of coupling the Reynolds transport equations with the Favre–Reynolds averaged Navier–Stokes equations, which results in a system of 12 coupled non-linear partial differential equations. The solutions are obtained by running the PUMA_RSM computational fluid dynamics code on unstructured meshes. The equations are solved all the way to the wall without using any wall functions. Results for high Reynolds number flow around a 6:1 prolate spheroid and a Bell 214ST fuselage are presented. For the prolate spheroid basic flow features such as cross-flow separation are simulated. Predictions of circumferential locations of cross flow separation points are in good agreement with the experiment. A grid refinement study is performed to improve the computations. The fine mesh solution predicted locations of primary and secondary separation points with errors of roughly 2° and 0°, respectively. Flow simulations around an isolated Bell 214ST helicopter fuselage were also performed. Predicted pressure and drag force correlate well with the wind tunnel data, with a less than 10% deviation from the experiment. Drag predictions also show relative speed of Reynolds Stress Model compared to Large Eddy Simulation to compute time averaged quantities. For numerical solutions parallel processing is applied with the MPI communication standard. The code used in this study is run on Beowulf clusters. The parallel performance of the code PUMA_RSM is analysed and presented.  相似文献   

10.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper derives analytical solutions for steady-state one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) two-phase immiscible subsurface flow for a counter-current problem. Since the governing equations are highly nonlinear, 2-D and 3-D derivations are generally difficult to obtain. The primary purpose for the solutions is to test finite difference/volume/element computer programs for accuracy and scalability using architectures ranging from PCs to parallel high performance computers. This derivation is accomplished by first solving for the saturation of water in terms of a function that is a solution to Laplace’s equation to achieve a set of partial differential equations that allows some degree of latitude in the choice of boundary conditions. Separation of variables and Fourier series are used to obtain the final solution. The test problem consists of a rectangular block of soil where specified pressure is applied at the top and bottom of the sample, and no-flow boundary conditions are imposed on the sides. The pressure at the top of the sample is a step function that allows the testing of adaptive meshing or concentration of grid points in action zones.  相似文献   

12.
A method is proposed for the solution of elastic quadrilateral plates under thermal loads. The procedure employs eigenfunctions for angular regions, together with a least squares technique. An electronic computer is a necessary adjunct to the proposed method of solution. Numerical results are given  相似文献   

13.
14.
A group of asymmetric difference schemes to approach the Korteweg-de Vries(KdV)equation is given here.According to such schemes,the full explicit difference scheme and the fun implicit one,an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed.The scheme is linear unconditionally stable by the analysis of linearization procedure,and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.  相似文献   

15.
The work concerns cnoidal and solitary wave solutions of the Boussinesq equations in the context of finite difference methods. The existence of permanent wave-forms is discussed and approximate solutions are found for one particular discrete formulation by perturbation techniques. These techniques can be applied to most difference and regular element discretizations of equations describing weakly non-linear and dispersive waves. No proof of convergence of the perturbation expansions is established, but the appropriateness of the solutions is confirmed through comparison with the results of computer simulations. From the perturbation series it is found that the phase speed of solitons is useless for the evaluation of numerical methods and that asymmetries in the discrete equations may ruin the soliton solution. The availability of a discrete closed-form solution is especially important for discussions concerning the existence and accuracy of permanent wave-forms with oblique orientations relative to the grid.  相似文献   

16.
A novel and robust approach has been proposed for the high-order discontinuous Galerkin (DG) discretization of the Reynolds-averaged Navier-Stokes (RANS) equations with the turbulence model of Spalart-Allmaras (SA). The solution polynomials of the SA equation are reconstructed by the Hermite weighted essentially non-oscillatory (HWENO) scheme. Several practical techniques are suggested to simplify and extend a positivity-preserving limiter to further guarantee the positivity of SA working variable. The resulting positivity-preserving HWENO limiting method is compact and easy to implement on arbitrary meshes. Typical turbulent flows are conducted to assess the accuracy and robustness of the present method. Numerical experiments demonstrate that with the increasing grid or order resolution, the limited results of the working variable are getting closer to the unlimited ones. And the most obvious improvement with proposed method is on the computation of the working variable field in wake regions.  相似文献   

17.
Parallel processing techniques have been used in the past to provide high performance computing resources for activities such as Computational Fluid Dynamics. This is normally achieved using specialized hardware and software, the expense of which would be difficult to justify for many fire engineering practices. In this paper, we demonstrate how typical office‐based PCs attached to a local area network have the potential to offer the benefits of parallel processing with minimal costs associated with the purchase of additional hardware or software. A dynamic load balancing scheme was devised to allow the effective use of the software on heterogeneous PC networks. This scheme ensured that the impact between the parallel processing task and other computer users on the network was minimized thus allowing practical parallel processing within a conventional office environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
从网格装配和插值计算两个主要方面对现有的重叠网格方法进行了综述。首先,从挖洞方法和建立嵌入网格关系环节的寻点技术出发归纳和介绍了网格装配方法;其次,介绍了数值迭代过程中的插值计算方法,并特别讨论了插值守恒性以及插值计算精度等问题;另外,对重叠网格方法的并行计算和应用成果也作了介绍;最后,通过总结认为重叠网格方法在改进网格装配方法、改善插值和并行计算效率等方面仍需进一步研究。  相似文献   

19.
Based on flux-based formulation, a nodeless variable element method is developed to analyze two-dimensional steady-state and transient heat transfer problems. The nodeless variable element employs quadratic interpolation functions to provide higher solution accuracy without necessity to actually generate additional nodes. The flux-based formulation is applied to reduce the complexity in deriving the finite element equations as compared to the conventional finite element method. The solution accuracy is further improved by implementing an adaptive meshing technique to generate finite element mesh that can adapt and move along corresponding to the solution behavior. The technique generates small elements in the regions of steep solution gradients to provide accurate solution, and meanwhile it generates larger elements in the other regions where the solution gradients are slight to reduce the computational time and the computer memory. The effectiveness of the combined procedure is demonstrated by heat transfer problems that have exact solutions. These problems are: (a) a steady-state heat conduction analysis in a square plate subjected to a highly localized surface heating, and (b) a transient heat conduction analysis in a long plate subjected to a moving heat source. The English text was polished by Yunming Chen.  相似文献   

20.
A local block refinement procedure for the efficient computation of transient incompressible flows with heat transfer is presented. The procedure uses patched structured grids for the blockwise refinement and a parallel multigrid finite volume method with colocated primitive variables to solve the Navier‐Stokes equations. No restriction is imposed on the value of the refinement rate and non‐integer rates may also be used. The procedure is analysed with respect to its sensitivity to the refinement rate and to the corresponding accuracy. Several applications exemplify the advantages of the method in comparison with a common block structured grid approach. The results show that it is possible to achieve an improvement in accuracy with simultaneous significant savings in computing time and memory requirements. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号