首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
The main challenge of the immersed boundary approach is the proper enforcement of boundary conditions on the body interface without any spurious oscillations, which are induced by the nongrid-conforming boundary configuration. In this study, a new sharp interface ghost-cell immersed boundary method (IBM) is proposed for obtaining solutions near the immersed boundary with a high order of accuracy. The main idea is “jump-reduction” instead of jump-correction across the boundary interface by combining the ghost-cell method with the flow reconstruction method. In the proposed IBM, the unknown values at the three points, that is, boundary points, ghost cell, and flow field reconstruction point are solved simultaneously using equations formulated by the moving least-squares interpolation method. It is a hybrid of ghost-cell and flow reconstruction methods, correlated with interface values, which result in a reduced jump-discontinuity. In addition, a discontinuity-distinguishing algorithm is introduced so that the low-order method is applied only to the discontinuous or non smooth region, while the current high-order method is applied elsewhere. Reduced jump-discontinuity of the proposed IBM has been verified in both subsonic and supersonic flow using fundamental benchmark problems. We observed that the reduced jump-discontinuity does not hamper the mass conservation and shows even better conservation property than conventional methods due to the nonoscillatory performance in smooth regions. The numerical results further confirm the ability of the proposed IBM to solve complex flow physics with high-order accuracy and improved stability.  相似文献   

2.
We present a numerical approach to simulate the dynamics of viscous vesicles (their internal and external fluids have different viscosities). The flow is computed using the lattice Boltzmann method and the fluid-vesicle two-way coupling is achieved using the immersed boundary method. The viscosity contrast (defined as the ratio of the internal to the external viscosities) is included using a geometrical algorithm that detects if a fluid node is either located inside or outside a vesicle. Our two-dimensional simulations successfully reproduce the tank-treading and tumbling dynamical states known for a viscous vesicle when it is subjected to simple shear flow. A good qualitative agreement between our simulation results and literature data is obtained. Moreover, we quantitatively analyze how inertia influences the dynamics of a vesicle and as an outlook we present an application of our method to the flow of multiple viscous vesicles in a microfluidic constriction.  相似文献   

3.
The dynamics of single droplets in a bounded shear flow is experimentally and numerically investigated for blends that contain one viscoelastic component. Results are presented for systems with a viscosity ratio of 1.5 and a Deborah number for the viscoelastic phase of 1. The numerical algorithm is a volume-of-fluid method for tracking the placement of the two liquids. First, we demonstrate the validation of the code with an existing boundary integral method and with experimental data for confined systems containing Newtonian components. This is followed by numerical simulations and experimental data for the combined effect of geometrical confinement and component viscoelasticity on the droplet dynamics after startup of shear flow at a moderate capillary number. The viscoelastic liquids are Boger fluids, which are modeled with the Oldroyd-B constitutive model and the Giesekus model. Confinement substantially increases the viscoelastic stresses and the elongation rates in and around the droplet. We show that the latter can be dramatic for the use of the Oldroyd-B model in confined systems with viscoelastic components. A sensitivity analysis for the choice of the model parameters in the Giesekus constitutive equation is presented.  相似文献   

4.
Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Time consuming meshing can be avoided when the solution algorithm can tackle grids that do not fit the shape of immersed objects. This work presents applications of a recently proposed immersed boundary—body conformal enrichment method to the solution of the flow around complex shaped surfaces such as those of a metallic foam matrix. The method produces solutions of the flow satisfying accurately Dirichlet boundary conditions imposed on the immersed fluid/solid interface. The boundary of immersed objects is defined using a level‐set function, and the finite element discretization of interface elements is enriched with additional degrees of freedom, which are eliminated at element level. The method is first validated in the case of flow problems for which reference solutions on body‐conformal grids can be obtained: flow around an array of spheres and flow around periodic arrays of cylinders. Then, solutions are shown for the more complex flow inside a metallic foam matrix. A multiscale approach combining the solution at the pore level by the immersed boundary method and the macro‐scale solution with simulated permeability is used to solve actual experimental configurations. The computed pressure drop as a function of the flow rate on the macro scale configuration replicating two experimental setups is compared with the experimental data for various foam thicknesses. Copyright © 2011 National Research Council Canada  相似文献   

5.
We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid–gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155°, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective measurements utilizing high-speed photography.  相似文献   

6.
A six degrees of freedom (6DOF) algorithm is implemented in the open‐source CFD code REEF3D. The model solves the incompressible Navier–Stokes equations. Complex free surface dynamics are modeled with the level set method based on a two‐phase flow approach. The convection terms of the velocities and the level set method are treated with a high‐order weighted essentially non‐oscillatory discretization scheme. Together with the level set method for the free surface capturing, this algorithm can model the movement of rigid floating bodies and their interaction with the fluid. The 6DOF algorithm is implemented on a fixed grid. The solid‐fluid interface is represented with a combination of the level set method and ghost cell immersed boundary method. As a result, re‐meshing or overset grids are not necessary. The capability, accuracy, and numerical stability of the new algorithm is shown through benchmark applications for the fluid‐body interaction problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A mixed boundary element and finite element numerical algorithm for the simultaneous prediction of the electric fields, viscous flow fields, thermal fields and surface deformation of electrically conducting droplets in an electrostatic field is described in this paper. The boundary element method is used for the computation of the electric potential distribution. This allows the boundary conditions at infinity to be directly incorporated into the boundary integral formulation, thereby obviating the need for discretization at infinity. The surface deformation is determined by solving the normal stress balance equation using the weighted residuals method. The fluid flow and thermal fields are calculated using the mixed finite element method. The computational algorithm for the simultaneous prediction of surface deformation and fluid flow involves two iterative loops, one for the electric field and surface deformation and the other for the surface tension driven viscous flows. The two loops are coupled through the droplet surface shapes for viscous fluid flow calculations and viscous stresses for updating the droplet shapes. Computing the surface deformation in a separate loop permits the freedom of applying different types of elements without complicating procedures for the internal flow and thermal calculations. Tests indicate that the quadratic, cubic spline and spectral boundary elements all give approximately the same accuracy for free surface calculations; however, the quadratic elements are preferred as they are easier to implement and also require less computing time. Linear elements, however, are less accurate. Numerical simulations are carried out for the simultaneous solution of free surface shapes and internal fluid flow and temperature distributions in droplets in electric fields under both microgravity and earthbound conditions. Results show that laser heating may induce a non-uniform temperature distribution in the droplets. This non-uniform thermal field results in a variation of surface tension along the surface of the droplet, which in turn produces a recirculating fluid flow in the droplet. The viscous stresses cause additional surface deformation by squeezing the surface areas above and below the equator plane.  相似文献   

10.
Large-eddy simulations (LES) of high Reynolds number flows are performed using a non-body conformal method in conjunction with a wall model. We use a simple wall function to model the wall-shear stress and the truncation error of the numerical discretization to model the sub-grid scale turbulence (implicit LES), although these can be easily replaced if necessary. The validation cases are: turbulent flow through an inclined channel, turbulent flow over a wavy surface, and supersonic flow over a circular cylinder. Since the near-wall grids are naturally coarse, the key is to use a method that is capable of capturing the flow dynamics accurately in the vicinity of the interface. Towards the purpose, we develop a Cartesian cut-cell method, referred to as the ghost-cell based cut-cell method (GC-CCM), in the context of fully compressible solutions of Navier–Stokes equations. This method employs ghost-cells inside the solid interface such that the local spatial reconstruction remains consistent everywhere including in the vicinity of the boundary. In order to capture the near-wall flow behavior more accurately with coarse grids, this method decomposes cell faces of merged cells and computes fluxes through each decomposed segment separately. The objective of this work is to qualify whether the proposed method can accurately represent the high Reynolds number flows in the vicinity of immersed interfaces. To analyze the performance of the proposed method, we compare the results to the corresponding numerical results from the two other non-body conformal methods, namely the ghost-cell based immersed boundary method (GCIBM) and standard cut-cell method (S-CCM), that are implemented in the same numerical solver. The comparison demonstrates that the proposed method is capable of capturing near-wall flows relatively accurately with coarse grids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号