首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties of film–substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating–substrate combinations. Surf. Coat. Technol., 191, 25–32), in which Al–Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1–0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film–substrate nano-indentation experiments.  相似文献   

2.
The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3° and 90° with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and , and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths . On the other hand, for the films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and thick films sink-in occurs around the indenter, while pile-up occurs in the film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].  相似文献   

3.
The influences of elastic substrate on the indentation force, contact radius, electric potential and electric charge responses of piezoelectric film/substrate systems are investigated by the integral transform method. The film is assumed to be ideally bonded to the substrate and the contact interaction between the indenter and the film is assumed to be frictionless, with three kinds of axisymmetric insulating and conducting indenters (i.e., punch, cone and sphere) considered. Obtained results show that when the ratio of the contact radius to the film thickness is close to zero, the influences of the elastic substrate disappear and the indentation behaviors converge to the piezoelectric half space solutions while the indentation responses approach the corresponding ones of elastic half space as the ratio gets to infinity. The transition between the piezoelectric and the elastic half space indentation solutions for the film/substrate system is quantified in terms of the film thickness and the elasticity of the substrate. Finite element analysis on an insulating sphere indentation is conducted to verify the numerical calculations and good agreement is observed. The obtained results are believed to be useful for developing experimental techniques to extract the material properties of piezoelectric film/substrate systems.  相似文献   

4.
Frictionless normal indentation problem of rigid flat-ended cylindrical, conical and spherical indenters on piezoelectric film, which is either in frictionless contact with or perfectly bonded to an elastic half-space (substrate), is investigated. Both conducting and insulating indenters are considered. With Hankel transform, the general solutions of the homogeneous governing equations for the piezoelectric layer and the elastic half-space are presented. Using the boundary conditions for a vertical point force or a point electric charge, and the boundary conditions on the film/substrate interface, the Green’s functions can be obtained by solving sets of simultaneous linear algebraic equations. The solution of the indentation problem is obtained by integrating these Green’s functions over the contact area with unknown surface tractions or electric charge distribution, which will be determined from the boundary conditions on the contact surface between the indenter and the film. The solution is expressed in terms of dual integral equations that are converted to a Fredholm integral equation of the second kind and solved numerically. Numerical examples are also presented. The comparison between two film/substrate bonding conditions is made. It shows that the indentation rigidity of the film/substrate system is lower when the film is in frictionless contact with the substrate. The effects of the Young’s modulus and Poisson’s ratio of the elastic substrate, indenter electrical condition and indenter prescribed electric potential on the indentation responses are presented.  相似文献   

5.
The indentation hardness-depth relation established by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411-425] agrees well with the micro-indentation but not nano-indentation hardness data. We establish an analytic model for nano-indentation hardness based on the maximum allowable density of geometrically necessary dislocations. The model gives a simple relation between indentation hardness and depth, which degenerates to Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411-425] for micro-indentation. The model agrees well with both micro- and nano-indentation hardness data of MgO and iridium.  相似文献   

6.
The indentation response of Ni thin films of thicknesses in the nanoscale was studied using molecular dynamics simulations with embedded atom method (EAM) interatomic potentials. A series of simulations were performed in films in the [1 1 1] orientation with thicknesses varying from 4 to 12.8 nm. The study included both single crystal films and films containing low angle grain boundaries perpendicular to the film surface. The simulation results for single crystal films show that as film thickness decreases larger forces are required for similar indentation depths but the contact stress necessary to emit the first dislocation under the indenter is nearly independent of film thickness. The low angle grain boundaries can act as dislocation sources under indentation. The mechanism of preferred dislocation emission from these boundaries operates at stresses that are lower as the film thickness increases and is not active for the thinnest films tested. These results are interpreted in terms of a simple model.  相似文献   

7.
Three-dimensional numerical simulations of Berkovich, Vickers and conical indenter hardness tests were carried out to investigate the influence of indenter geometry on indentation test results of bulk and composite film/substrate materials. The strain distributions obtained from the three indenters tested were studied, in order to clarify the differences in the load–indentation depth curves and hardness values of both types of materials. For bulk materials, the differentiation between the results obtained with the three indenters is material sensitive. The indenter geometry shape factor, β, for evaluating Young’s modulus for each indenter, was also estimated. Depending on the indenter geometry, distinct mechanical behaviours are observed for composite materials, which are related to the size of the indentation region in the film. The indentation depth at which the substrate starts to deform plastically is sensitive to indenter geometry.  相似文献   

8.
Indentation models for thin layer-substrate geometry with an interphase have been developed. The interphase can be modeled either as a nonhomogeneous layer or as a homogeneous layer. Between the two models of the interphase, contact depth and critical interfacial stresses are compared to find the effect of indentation area, film and substrate Young’s moduli, and the interphase and film thicknesses. Although contact depth is found not to be sensitive to the type of interphase model used, critical interfacial stresses are significantly different (up to 15%) for film to substrate elastic Young’s moduli ratios of more than 25. A formal sensitivity analysis based on design of experiments shows that on critical interfacial stresses, interphase to film thickness ratio and film to substrate Young’s moduli ratio has the most impact, while type of elastic moduli variation in the interphase and indentor width to film thickness ratio has the least impact.  相似文献   

9.
在考虑单晶铜基体弹塑性形变和晶体各向异性情况下,基于原子尺度,采用混合势函数(EAM和Morse)和Verlet算法动态模拟了半球形和圆锥形两种不同形状压头与单晶铜基体的黏着接触和滑动摩擦过程,分析了接触力和摩擦力对单晶铜基体内失效原子变化情况.研究表明:当压头下压位移为0.9 nm时,由于半球形压头比圆锥形压头底部表面积大,导致半球形压头与基体之间的引力更大而更易产生黏着接触现象.在下压接触过程中,与半球形压头相接触的基体内出现位错原子长大成位错环,而与圆锥形压头相接触的基体未出现此位错环现象,但位错原子数均随压深的增加而增多;在滑动过程中,因半球形压头对基体的摩擦力和法向力比圆锥形压头对基体的摩擦力和法向力大,使得半球形压头比圆锥形压头正前方堆积的位错原子数多,但均随滑动距离的增加而增多.  相似文献   

10.
A study has been made of the elastic and plastic deformation associated with submicrometer indentation of thin films on substrates using the finite element method. The effects of the elastic and plastic properties of both the film and substrate on the hardness of the film/substrate composite are studied by determining the average pressure under the indenter as a function of the indentation depth. Calculations have been made for film/substrate combinations for which the substrate is either harder or softer than the film and for combinations for which the substrate is either stiffer or more compliant than the film. It is found, as expected, that the hardness increases with indentation depth when either the yield strength or the elastic modulus of the substrate is higher than that of the film. Correspondingly, the hardness decreases with indentation depth when the yield strength or elastic modulus of the substrate is lower than that of the film. Functional equations have been developed to predict the hardness variation with depth under these different conditions. Finite element simulation of the unloading portion of the load displacement curve permits a determination of the elastic compliance of the film/substrate composite as a function of indentation depth. The elastic properties of the film can be separated from those of the substrate using this information. The results are in good agreement with King's analytical treatment of this problem.  相似文献   

11.
The influence of the indenter shapes and various parameters on the magnitude of the capillary force is studied on the basis of models describing the wet adhesion of indenters and substrates joined by liquid bridges. In the former, we consider several shapes, such as conical, spherical and truncated conical one with a spherical end. In the latter, the effects of the contact angle, the radius of the wetting circle, the volume of the liquid bridge, the environmental humidity, the gap between the indenter and the substrate, the conical angle, the radius of the spherical indenter, the opening angle of the spherical end in the truncated conical indenter are included. The meniscus of the bridge is described using a circular approximation, which is reasonable under some conditions. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. The results can be applicable to the micro- and nano-indentation experiments. It shows that the measured hardness is underestimated due to the effect of the capillary force.  相似文献   

12.
In this paper, finite element simulations of spherical indentation of a thin hard film deposited on a soft substrate are carried out. The primary objective of this work is to understand the operative mode of deformation of the film corresponding to various stages of indentation. The transition from contact dominant behaviour to that governed by flexure of the film on the plastically yielding substrate is investigated from analysis of the load versus displacement curve as well as the stress distribution in the film. It is found that onset of bending deformation in the film occurs when the contact radius is about 0.2–0.3 of the film thickness. Further, distinct membrane stresses arise in the film for indentation depth greater than half the film thickness. The implications of these results on indentation fracture of the film are briefly discussed. Finally, the effects of substrate yield strength and presence of residual stresses on the indentation response are examined.  相似文献   

13.
The enhanced gradient plasticity theories formulate a constitutive framework on the continuum level that is used to bridge the gap between the micromechanical plasticity and the classical continuum plasticity. They are successful in explaining the size effects encountered in many micro- and nano-advanced technologies due to the incorporation of an intrinsic material length parameter into the constitutive modeling. However, the full utility of the gradient-type theories hinges on one's ability to determine the intrinsic material length that scales with strain gradients, and this study aims at addressing and remedying this situation. Based on the Taylor's hardening law, a micromechanical model that assesses a nonlinear coupling between the statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) is used here in order to derive an analytical form for the deformation-gradient-related intrinsic length-scale parameter in terms of measurable microstructural physical parameters. This work also presents a method for identifying the length-scale parameter from micro- and nano-indentation experiments using both spherical and pyramidal indenters. The deviation of the Nix and Gao [Mech. Phys. Solids 46 (1998) 411] and Swadener et al. [J. Mech. Phys. Solids 50 (2002) 681; Scr. Mater. 47 (2002) 343] indentation size effect (ISE) models’ predictions from hardness results at small depths for the case of conical indenters and at small diameters for the case of spherical indenters, respectively, is largely corrected by incorporating an interaction coefficient that compensates for the proper coupling between the SSDs and GNDs during indentation. Experimental results are also presented which show that the ISE for pyramidal and spherical indenters can be correlated successfully by using the proposed model.  相似文献   

14.
In an indentation test, the effective Young’s modulus of a film/substrate bilayer heterostructure varies with the indentation depth, a phenomenon known as the substrate effect. In previous studies investigating this, only the Young’s modulus of the film was unknown. Once the effective Young’s modulus of a film/substrate structure is determined at a given contact depth, the Young’s modulus of the film can be uniquely determined, i.e., there is a one-to-one relation between the Young’s modulus of the film and the film/substrate effective Young’s modulus. However, at times it is extremely challenging or even impossible to measure the film thickness. Furthermore, the precise definition of the layer/film thickness for a two-dimensional material can be problematic. In the current study, therefore, the thickness of the film and its Young’s modulus are treated as two unknowns that must be determined. Unlike the case with one unknown, there are infinite combinations of film thickness and Young’s modulus which can yield the same effective Young’s modulus for the film/substrate. An inverse problem is formulated and solved to extract the Young’s modulus and thickness of the film from the indentation depth-load curve. The accuracy and robustness of the inverse problem-solving method are also demonstrated.  相似文献   

15.
Hard wear resistant coatings that are subjected to contact loading sometimes fail because the coating delaminates from the substrate. In this report, systematic finite element computations are used to model coating delamination under contact loading. The coating and substrate are idealized as elastic and elastic–plastic solids, respectively. The interface between coating and substrate is represented using a cohesive zone law, which can be characterized by its strength and fracture toughness. The system is loaded by an axisymmetric, frictionless spherical indenter. We observe two failure modes: shear cracks may nucleate just outside the contact area if the indentation depth or load exceeds a critical value; in addition, tensile cracks may nucleate at the center of the contact when the indenter is subsequently removed from the surface. Delamination mechanism maps are constructed which show the critical indentation depth and force required to initiate both shear and tensile cracks, as functions of relevant material properties. The fictitious viscosity technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces allows us to explore a wider parametric space that a conventional cohesive model cannot handle. Numerical results have also been compared to analytical analyses of asymptotic limits using plate bending and membrane stretching theories, thus providing guidelines for interpreting the simulation results.  相似文献   

16.
利用纳米硬度仪研究了在Cu基底上的Cu/Cr梯度膜的机械性能。梯度膜是通过将Cu靶和Cr靶同时溅射到Cu基底材料上,但两个靶的相对溅射功率随溅射时间变化而制备。利用Oliver and Pharr方法得到了膜随其厚度变化的硬度和弹性模量。然后利用加载/卸载/再加载的方法得到了在不同深度(即膜的厚度)压头平均压力与相对压人深度之间的关系曲线,在此曲线上可以明显反映出材料的屈服特性。  相似文献   

17.
Frictionless indentation responses of transversely isotropic piezoelectric film/rigid substrate systems under circular cylindrical indenter (i.e., punch), conical indenter (i.e., cone), and spherical indenter (i.e., sphere) are investigated. Both insulating and conducting indenters are considered. The technique of Hankel transformation is employed to derive the corresponding dual integral equations for the mixed boundary value indentation problems. For the two limiting cases of infinitely thick and infinitely thin piezoelectric films, closed-form solutions are obtained. For piezoelectric films of finite thickness, a numerical method is constructed to solve the dual integral equations and semi-empirical models having only two unknown parameters are proposed for the responses of indentation force, electric charge and electric potential, and contact radius. With the two parameters inferred from the numerical results, the semi-empirical formulae are found to provide good estimates of the indentation responses for the two limiting cases of infinitely thick and thin piezoelectric films, as well as those in between. The inferred parameters in the proposed semi-empirical formulae for normalized indentation force and electric charge are checked against four different piezoelectric materials and are found to be insensitive to the selection of piezoelectric materials. It is believed that the proposed semi-empirical indentation formulae are useful in developing experimental indentation techniques to extract the material properties of piezoelectric films.  相似文献   

18.
We consider a classical contact mechanics problem, namely, the indentation of a ductile half-plane by a rigid flat punch (in plane strain), and revisit it using the dislocation mechanics approach. The dislocation nucleation and dislocation interaction beneath the indenter are examined. The threshold load for dislocation nucleation and the dislocation emission angle are obtained in analytical form. Moreover, based on the consideration of dislocation interaction, we explore the mechanism of contact load evolution (hardening). A triangular “dead zone” beneath the indenter, which could not be thus far accurately explained by traditional continuum models, is predicted in good agreement with the results of careful experiments that are reported in the literature. The proposed model is likely to be useful for the analysis of contacts at both the micro- and macro-scales.  相似文献   

19.
A large-scale atom simulation of nanoindentation into a thin nickel film using thequasicontinuum method was performed. The initial stages of the plasticity deformation of nickelwere studied. Several useful results were obtained as follows: (1)The response of the load versusindentation depth—on the load versus indentation depth curve, besides the straight parts cor-responding to the elastic property of nickel, the sudden drop of the load occurred several times;(2) The phenomena of dislocation nucleation—the dislocation nucleation took place when theload descended, which makes it clear that dislocation nucleation causes the drop of the load;(3)The mechanism of the dislocation emission—the Peierls-Nabarro dislocation model and a pow-erful criterion were used to analyze the dislocation emission. And the computational value was ingood agreement with the predict value; (4) The density of geometrically necessary dislocations.A simple model was used to obtain the density of geometrically necessary dislocations beneaththe indenter. Furthermore, the influence of the boundary conditions on the simulation results wasdiscussed.  相似文献   

20.
镍单晶薄膜纳米压痕的准连续介质模拟   总被引:2,自引:2,他引:0  
用准连续介质方法模拟了大规模原子的镍薄膜在纳米压痕下发生初始塑性变形的行为.主要得到了:(1)载荷-位移响应.在载荷位移曲线上除了反应晶体弹性性质的直线外还有数次的载荷突然下降过程.(2)位错形核现象.与载荷-位移曲线上的载荷突然下降相对应的在受压的晶体上发现了位错形核现象,说明载荷的下降是因为位错形核引起的.(3)位错的发射机制.用Peierls-Nabarro位错模型以及能量法分析了位错的发射机制,理论值与计算值吻合较好.(4)几何必需位错密度.用一个简单的模型计算了几何必须位错密度.此外还考虑了边界条件对模拟结果的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号