首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This paper is concerned with the derivation of dynamical equations for freely deforming bodies with more than six degrees of freedom which are immersed in an inviscid incompressible fluid. Following Proudman's pioneering work for a sphere our method is applied to a fluid with uniform vorticity but otherwise arbitrary non-uniform strain-rate at the instant after the body has been impulsively introduced into the fluid. The rotational disturbance field is consequently zero thus enabling the generalised force–moments of arbitrary order to be determined from a Laplace problem through the use of Green's theorem and generalised Kirchhoff potentials. An infinite system of equations is obtained each which contains an inertial term, given by the rate of change of the generalised Kelvin Impulse, a generalised lift, a deformation-induced surface momentum flux and a surface kinetic energy. The assumption of an impulsive start places no constraint on the use of our force–moment formulae in irrotational flow but they can only be applied at the starting instant in rotational flow or, when the strain-rate is weak, for early times in the body's motion. Nonetheless, the start conditions for the rotational case can be created experimentally and be applied to initially free tumbling bodies when they start to deform. This newly identified equation system provides the foundation for new analytical and numerical approaches to the macroscopic modelling of freely deforming bodies and bubbly two-phase flow. In particular, the equations show that the added masses are not sufficient to characterise the body's geometry and that independent geometric constants are also required, here referred to as the added Kirchhoff energies. Finally, the zero- and first-order force–moment equations are used to derive the force and torque that apply to bodies with six degrees of freedom and their analytic forms are shown to agree with independent results for arbitrarily shaped deforming bodies in both rotational and irrotational flows.  相似文献   

2.
A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd.  相似文献   

3.
An efficient method is developed to investigate the vibration and stability of moving plates immersed in fluid by applying the Kirchhoff plate theory and finite element method.The fluid is considered as an ideal fluid and is described with Bernoulli’s equation and the linear potential flow theory.Hamilton’s principle is used to acquire the dynamic equations of the immersed moving plate.The mass matrix,stiffness matrix,and gyroscopic inertia matrix are determined by the exact analytical integration.The numerical results show that the fundamental natural frequency of the submersed moving plates gradually decreases to zero with an increase in the axial speed,and consequently,the coupling phenomenon occurs between the first-and second-order modes.It is also found that the natural frequency of the submersed moving plates reduces with an increase in the fluid density or the immersion level.Moreover,the natural frequency will drop obviously if the plate is located near the rigid wall.In addition,the developed method has been verified in comparison with available results for special cases.  相似文献   

4.
In this paper we extend some of our previous works on continua with stress threshold. In particular here we propose a mathematical model for a continuum which behaves as a non-linear upper convected Maxwell fluid if the stress is above a certain threshold and as a Oldroyd-B type fluid if the stress is below such a threshold. We derive the constitutive equations for each phase exploiting the theory of natural configurations (introduced by Rajagopal and co-workers) and the criterion of the maximization of the rate of dissipation. We state the mathematical problem for a one-dimensional flow driven by a constant pressure gradient and study two peculiar cases in which the velocity of the inner part of the fluid is spatially homogeneous.  相似文献   

5.
研究了Kirchhoff积分面是否有盖有底,以及是否计及旋翼网格上的流场值,这两个因素对噪声预测结果的影响.发展了一种基于重叠网格的计算悬停旋翼远场噪声的数值方法.数值计算过程分为流场模拟和声场模拟两部分.悬停旋翼流场的数值模拟是在两个相互重叠的网格上进行的:在高质量的旋翼网格上求解Navier-Stokes方程,用于模拟旋翼附近的粘性流动和近场尾涡的捕捉;在远离粘性区域处布置符合悬停流场物理特征的圆柱形背景网格,控制方程为Euler方程,用于远场尾涡的捕捉.计算得到的流场信息插值到用于声场计算的Kirchhoff积分面上.观测点处的噪声可以认为是由这个完全包含桨叶的Kirchhoff积分面上的面元(声源)发声得到.远场声波的传播由Kirchhoff积分公式描述.计算结果表明:采用有盖有底的Kirchhoff积分面并且同时计及旋翼网格流场值时,计算得到的HSI噪声与实验值吻合最好.  相似文献   

6.
Differential equations are obtained in the approximation of a slender body for the shape of thin nonstationary axisymmetric cavities. In contrast to the equations obtained earlier by Grigoryan [1] and the author [2], the equations derived in the present paper contain the well-known asymptotic behavior for a flow of Kirchhoff type in the stationary case. For the case of compressible fluid, the dependence found for the asymptotic behavior of the cavity on the Mach number differs from the result obtained by Gurevich [3]. When compressibility is taken into account, the cavity area grows less rapidly. It is shown that the solutions of the obtained differential equations satisfy the well-known separation conditions [3, 4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 3–10, May–June, 1981.I thank L. I. Sedov, S. S. Grigoryan, V. P. Karlikov, V. A. Eroshin and others who participated in a discussion of the work, and also L. A. Barmina for assisting in the preparation of the paper.  相似文献   

7.
In swelling porous media, the potential for flow is much more than pressure, and derivations for flow equations have yielded a variety of equations. In this article, we show that the macroscopic flow potentials are the electro-chemical potentials of the components of the fluid and that other forms of flow equations, such as those derived through mixture theory or homogenization, are a result of particular forms of the chemical potentials of the species. It is also shown that depending upon whether one is considering the pressure of a liquid in a reservoir in electro-chemical equilibrium with the swelling porous media, or the pressure of the vicinal liquid within the swelling porous media, a critical pressure gradient threshold exists or does not.  相似文献   

8.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

9.
In this study, a numerical investigation has been carried out to reveal the mechanism of fluid flow and heat transfer from a vertical rectangular fin attached to a partially heated horizontal base. The problem is a conjugate conduction-convection heat transfer problem with open boundaries. The governing equations for the problem are the conservation of mass, momentum and energy equations for the fluid and the heat conduction equation for the fin. The control volume technique based on the SIMPLEC algorithm with a nonstaggerred grid arrangement is employed to solve the governing equations. The effect of the heated base, on the mechanism of the fluid flow and heat transfer, is numerically investigated. Temperature distribution and flow patterns around the fin are plotted to support the discussion. Results are obtained for air at laminar and steady flow. Received on 15 May 1997  相似文献   

10.
Erosion predictions in a pipe with abrupt contraction of different contraction ratios for the special case of two‐phase (liquid and solid) turbulent flow with low particle concentration are presented. A mathematical model based on the time‐averaged governing equations of 2‐D axi‐symmetric turbulent flow is used for the calculations of the fluid velocity field (continuous phase). The particle‐tracking model of the solid particles is based on the solution of the governing equation of each particle motion taking into consideration the effect of particle rebound behaviour. Models of erosion were used to predict the erosion rate in mg/g. The effect of Reynolds number and flow direction with respect to the gravity was investigated for three contraction geometries considering water flow in a carbon steel pipe. The results show that the influence of the contraction ratio on local erosion is very significant. However, this influence becomes insignificant when the average erosion rates over the sudden contraction area are considered. The results also indicate the significant influence of inlet velocity variations. The influence of buoyancy is significant for the cases of low velocity of the continuous flow. A threshold velocity below which erosion may be neglected was indicated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A complete three-dimensional mathematical model has been developed governing the steady, laminar flow of an incompressible fluid subjected to a magnetic field and including internal heating due to the Joule effect, heat transfer due to conduction, and thermally induced buoyancy forces. The thermally induced buoyancy was accounted for via the Boussinesq approximation. The entire system of eight partial differential equations was solved by integrating intermittently a system of five fluid flow equations and a system of three magnetic field equations and transferring the information through source-like terms. An explicit Runge-Kutta time-stepping algorithm and a finite difference scheme with artificial compressibility were used in the general non-orthogonal curvilinear boundary-conforming co-ordinate system. Comparison of computational results and known analytical solutions in two and three dimensions demonstrates high accuracy and smooth monotone convergence of the iterative algorithm. Results of test cases with thermally induced buoyancy demonstrate the stabilizing effect of the magnetic field on the recirculating flows.  相似文献   

12.
The selection of solutions describing steady irrotational flow of an ideal incompressible fluid over bodies is considered. The selection is based on restrictions that follow from the physical properties of a real fluid and from the presence of a boundary layer on the body. In particular, for any body one can specify a minimal Euler number below which flow without cavitation becomes physically impossible. In the limiting case of an Euler number equal to zero, only the Kirchhoff scheme is physical admissible, and the cavity section tends to a circle. An equation is derived for the limiting shapes of cavities at small cavitation numbers, and a comparison is made with known results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 19–26, September–October, 1980.  相似文献   

13.
The paper presents a semi‐implicit algorithm for solving an unsteady fluid–structure interaction problem. The algorithm for solving numerically the fluid–structure interaction problems was obtained by combining the backward Euler scheme with a semi‐implicit treatment of the convection term for the Navier–Stokes equations and an implicit centered scheme for the structure equations. The structure is governed either by the linear elasticity or by the non‐linear St Venant–Kirchhoff elasticity models. At each time step, the position of the interface is predicted in an explicit way. Then, an optimization problem must be solved, such that the continuity of the velocity as well as the continuity of the stress hold at the interface. During the Broyden, Fletcher, Goldforb, Shano (BFGS) iterations for solving the optimization problem, the fluid mesh does not move, which reduces the computational effort. The term ‘semi‐implicit’ used for the fully algorithm means that the interface position is computed explicitly, while the displacement of the structure, velocity and the pressure of the fluid are computed implicitly. Numerical results are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The MHD Couette flow of two immiscible fluids in a parallel plate channel in the presence of an applied electric and inclined magnetic field is investigated in the paper. One of the fluids is assumed to be electrically conducting, while the other fluid and the channel plates are assumed to be electrically insulating. Separate solutions with appropriate boundary conditions for each fluid are obtained and these solutions are matched at the interface using suitable matching conditions. The partial differential equations governing the flow and heat transfer are transformed to ordinary differential equations and closed-form solutions are obtained in both fluid regions of the channel. The results for various values of the Hartmann number, the angle of magnetic field inclination, the loading parameter and the ratio of the heights of the fluids are presented graphically to show their effect on the flow and heat transfer characteristics.  相似文献   

15.
This Note describes an acoustic filtering of the equations governing the supercritical fluid buoyant flow driven by a weak heating. The resulting low Mach number approximation takes into account the compressibility of the fluid with respect to the hydrostatic pressure. Using the direct numerical simulation of a supercritical fluid flow in the Rayleigh–Bénard configuration, we show that the density stratification may be taken into account without further numerical effort and is fundamental for the prediction of the convective instability threshold induced by a weak heating. To cite this article: G. Accary et al., C. R. Mecanique 333 (2005).  相似文献   

16.
为解决裂隙岩体非稳态渗流问题, 发展了一种新的数值模型. 对于单裂隙渗 流求解, 其控制方程是基于一定假设的简化Navier-Stokes方程, 数值方法采用有限差分法 和流体体积法. 在裂隙网络中, 交界处渗流可以由专门的控制方程求解. 计算结果表明, 该 数值模型既可以大幅提高非稳态渗流的计算效率, 还可以避免孤立裂隙所带来的影响. 最后, 通过两个工程算例验证该数值模型的适用性.  相似文献   

17.
The nonlinear forced vibrations of a cantilevered pipe conveying fluid under base excitations are explored by means of the full nonlinear equation of motion, and the fourthorder Runge-Kutta integration algorithm is used as a numerical tool to solve the discretized equations. The self-excited vibration is briefly discussed first, focusing on the effect of flow velocity on the stability and post-flutter dynamical behavior of the pipe system with parameters close to those in previous experiments. Then, the nonlinear forced vibrations are examined using several concrete examples by means of frequency response diagrams and phase-plane plots. It shows that, at low flow velocity, the resonant amplitude near the first-mode natural frequency is larger than its counterpart near the second-mode natural frequency. The second-mode frequency response curve clearly displays a softening-type behavior with hysteresis phenomenon, while the first-mode frequency response curve almost maintains its neutrality. At moderate flow velocity,interestingly, the first-mode resonance response diminishes and the hysteresis phenomenon of the second-mode response disappears. At high flow velocity beyond the flutter threshold, the frequency response curve would exhibit a quenching-like behavior. When the excitation frequency is increased through the quenching point, the response of the pipe may shift from quasiperiodic to periodic. The results obtained in the present, work highlight the dramatic influence of internal fluid flow on the nonlinear forced vibrations of slender pipes.  相似文献   

18.
Nonlinear fluid flow laws for orthotropic porous media are written in invariant tensor form. As usual in the theory of fluid flow through porous media [1, 2], the equations contain the flow velocity up to the second power. Expressions that determine the nonlinear resistances to fluid flow are presented and it is shown that, on going over from linear to nonlinear flow laws, the asymmetry effect may manifest itself, that is, the fluid flow characteristics may differ along the same straight line in the positive and negative directions. It is shown that, as compared with the linear fluid flow law for orthotropic media when for three symmetry groups a single flow law is sufficient, in nonlinear laws the anisotropy manifestations are much more variable and each symmetry group must be described by specific equations. A system of laboratory measurements for finding the nonlinear flow characteristics for orthotropic porous media is considered.  相似文献   

19.
An analytical solution is developed for the problem of fluid flow in stress sensitive porous medium. The solution technique uses the Kirchhoff type of transformation to define a stress factor which facilitates the specification of a one-parameter stress-dependent diffusivity function. The function is capable of fitting most known diffusivity data empirically. The general analytical solution is easily reduceable to the more familar solution derivable for the constant property porous medium.  相似文献   

20.
Analytical and numerical study is conducted for two-dimensional steady-state buoyancy driven flow of a non-Newtonian power law fluid confined in a shallow rectangular horizontal cavity uniformly heated from below, while its short vertical rigid sides are considered adiabatic. The effect of the non-Newtonian behaviour on the onset of convection, fluid flow, temperature field, and heat transfer is examined. A closed approximate analytical solution is developed on the basis of the parallel flow assumption and the obtained results are validated numerically by solving the full governing equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号