首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
金属材料疲劳行为的应力场强法描述   总被引:13,自引:0,他引:13  
基于近年来发展的应力场地对金属材料的多种疲劳行为作了系统的描述,给出了缺口疲劳系Kf,疲劳尺寸系数ε,疲劳加载方式因子CL,多轴疲劳极限方程,缺口件S-N曲线的预测等多方面的定量描述,并引用了大量的实验数据加以验证,由此表明应场强法是一种很好的抗疲劳设计方法。  相似文献   

2.
高温合金材料循环相关热机械疲劳寿命预测   总被引:5,自引:0,他引:5  
在变温非线性运动强化规律所描述的高温合金材料热机械寿命应力-应变循环特性的基础上,讨论了应变控制的循环相关热机械疲劳寿命预测技术,所建模型采用了由应变以密度表示的损伤参数,并且引入了温度损伤系数,考虑了温度变化范围以及温度循环和应变循环相位关系对疲劳寿命的影响,在确定模型的一些参数,采用等温力学试验和疲劳试验的数据,为了把等温疲劳研究成果推广到变温疲劳分析领域,开辟了新的途径。  相似文献   

3.
高金华 《实验力学》1998,13(2):237-241
机翼全尺寸疲劳试验是老龄飞机延寿的科学依据。本文介绍了疲劳裂纹形成和扩展寿命的分散系数,以及可靠度和标准差的选取。针对延寿的可靠性分析,提出按疲劳/损伤容限设计概念或当量裂纹扩展寿命方法,以及机翼串联模型,确定整机延寿使用寿命的技术途径。最后给出应用实例。  相似文献   

4.
The permanent residual strain in aluminum (Al) alloy foams induced by compressive fatigue gradually increases with the increasing number of loading cycles. Consequently, the progressive shortening of Al-alloy foam degrades the dynamic material performance by the failure and ratcheting of multi-cells in the foam. In this paper, the dynamic properties of Al-alloy foams damaged by compressive fatigue were studied. The beam specimens with various residual strains were made by cyclic compression-compression stress. The dynamic bending modulus and loss factor were evaluated by using a beam transfer function method. As a result, the dynamic bending stiffness of Al-alloy foam turned out to be decreased due to damage while the loss factor was improved because of the increasing energy dissipation of such factors as cracked cell walls formed during the shortening process of the foam. The loss factor shows a manifest dependence on the fatigue residual strain.  相似文献   

5.
着重研究场强法理论下疲劳缺口系数Kf的计算.结果表明应力场强法理论下的疲劳缺口系数Kf与试验结果符合得较好,用应力场强法理论计算得到的等幅和变辐载荷的寿命与试验寿命也符合得较好.  相似文献   

6.
复合加载下疲劳裂纹扩展速率研究   总被引:1,自引:0,他引:1  
本文提出了一种计算曲折裂纹尖端应力强度因子的简单方法。对一种油井钻杆材料在不同Ⅰ-Ⅱ复合比加载下的疲劳裂纹扩展行为的研究表明,Ⅱ型成分成对裂纹扩展速率有两种趋势相反的影响作用,并得到了一个计算复合型裂纹扩展速率的Paris形式的公式。  相似文献   

7.
This paper presents some test and analysis results for a spot welded joint subjected to tensile and alternate load. The effect of sheet rigidity on the tensile strength and fatigue life of the spot welded joint is studied by using the stress intensity factorsK I,K II,K III and an effective stress intensity factor Kmax calculated by the finite element method for crack around the nugget. The results show that the effective stress intensity factor Kmax is an essential parameter for estimating the fatigue life of the spot welded joint.  相似文献   

8.
The impulse response method is applied to the analysis of the thermally striped internal surface of a hollow cylinder containing a circumferential crack on this surface. Stress intensity factor and strain energy density factor ranges as functions of crack depth for various sinusoidal striping frequencies are calculated. Good agreement is found with both the frequency response and finite element methods. Results for stress intensity factor fluctuations have been applied to the calculation of maximum allowable temperature striping amplitudes. Solutions for striping on the external surface are also presented.  相似文献   

9.
Crack propagation under alternating loading is investigated. Relations between the growth rate of a fatigue defect and loading parameters and the expression for the stress intensity factor are derived for compression of a cracked solid taking into account the possible contact of the crack faces. A model for the deformation of a small region near the crack tip is proposed which allows one to formulate the conditions of residual opening of a growing fatigue crack. The experimental data obtained in tests of steel samples are compared with the results of calculation using the developed procedure. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 190–198, September–October, 2008.  相似文献   

10.
常幅载荷下结构元件断裂可靠度估算的应力强度因子模型   总被引:3,自引:0,他引:3  
给出了一个估算结构元件疲劳可靠度的应力强度因子模型,系统阐述了元件在常幅载荷下疲劳可靠性的分析方法。该模型研究了常幅载荷作用下材料瞬时裂纹长度和应力强度因子的分布形式,建立了应力强度因子与断裂韧性之间的干涉关系。对7075-T7351铝合金中心裂纹试件试验数据分析的结果表明:裂纹的瞬时扩展长度和可靠度的预测结果均与试验结果符合很好,本文给出的基于应力强度因子的可靠性分析模型是合理的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号