首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
 The dynamic flow behavior of polyamide-6 (PA-6) and a nanocomposite (PNC) based on it was studied. The latter resin contained 2 wt% of organoclay. The two materials were blended in proportions of 0, 25, 50, 75, and 100 wt% PNC. The dynamic shear rheological properties of well-dried specimens were measured under N2 at T=240 °C, frequency ω=0.1–100 rad/s, and strains γ=10 and 40%. At constant T, γ, and ω the time sweeps resulted in significant increases of the shear moduli. The γ and ω scans showed a complex rheological behavior of all clay-containing specimens. At γ=10% the linear viscoelasticity was observed for all compositions only at ω>1 rad/s, while at γ=40% only for 0 and 25 wt% of PNC. However, the effect was moderate, namely decreasing G′ and G′′ (at ω=6.28 rad/s; γ=50%) by 15 and 7.5%, respectively. For compositions containing >25 wt% PNC two types of non-linearity were detected. At ω≤ωc=1.4 ± 0.2 rad/s yield stress provided evidence of a 3-D structure. At ω > ωc, G′ and G′′ were sensitive to shear history – the effect was reversible. From the frequency scans at ω > ωc the zero-shear relative viscosity vs concentration plot was constructed. The initial slope gave the intrinsic viscosity from which the aspect ratio of organoclay particles, p=287 ± 9 was calculated, in agreement with the value calculated from the reduced permeability data, p=286. Received: 24 May 2001 Accepted: 27 August 2001  相似文献   

2.
 The elastic properties of model suspensions with spherical monodisperse hydrophilic glass spheres that were dispersed in a Newtonian liquid were determined in creep and creep recovery measurements in shear with a magnetic bearing torsional creep rheometer. The creep and creep recovery measurements were performed depending on the applied level of shear stresses ranging from 0.19 Pa to 200 Pa. Since the recoverable creep compliances of the chosen suspending medium (i.e. a low molecular weight polyisobutylene) were far below the lower limit of the resolution of the creep rheometer it can be considered to behave as purely viscous. By applying a large shear stress in the creep tests the investigated suspensions with a volume fraction of Φ t =0.35 behave as Newtonian liquids, too. For these suspensions no significant recoverable creep compliances could be detected, as well. In contrast to the Newtonian state of suspensions at high shear stresses, where a shear induced ordering of the particles can be expected, a non-Newtonian behaviour arises by applying a very low shear stress in the creep test. In this state large recoverable creep compliances were detected for the suspensions. The magnitude of the recoverable creep compliances of the suspensions exceeded the largest creep compliances of polymer melts that are reported in the literature by more than two decades. From the results obtained by creep recovery measurements with a magnetic bearing torsional creep rheometer it can clearly be concluded that the particle structure present in the chosen model suspension gives rise to a pronounced elasticity. Received: 21 November 2000 Accepted: 12 July 2001  相似文献   

3.
 The apparent viscosities of purely viscous non-Newtonian fluids are shear rate dependent. At low shear rates, many of such fluids exhibit Newtonian behaviour while at higher shear rates non-Newtonian, power law characteristics exist. Between these two ranges, the fluid's viscous properties are neither Newtonian or power law. Utilizing an apparent viscosity constitutive equation called the “Modified Power Law” which accounts for the above behavior, solutions have been obtained for forced convection flows. A shear rate similarity parameter is identified which specifies both the shear rate range for a given fluid and set of operating conditions and the appropriate solution for that range. The results of numerical solutions for the friction factor–Reynolds number product and for the Nusselt number as a function of a dimensionless shear rate parameter have been presented for forced fully developed laminer duct flows of different cross-sections with modified power law fluids. Experimental data is also presented showing the suitability of the “Modified Power Law” constitutive equation to represent the apparent viscosity of various polymer solutions. Received on 21 August 2000  相似文献   

4.
Rheological and mechanical properties of aqueous mono-disperse silica suspensions (Ludox? HS40) are investigated as a function of particle volume fraction (ϕ p ranging from 0.22 to 0.51) and water content, using shear rate tests, oscillatory methods, indentation and an ultrasonic technique. As the samples are progressively dried, four regimes are identified; they are related to the increasing particle content and the existence and behaviour of the electrical double layer (EDL) around each particle. For 0.22 ≤ ϕ p ≤ 0.30), the suspensions are stable due to the strong electrostatic repulsion between particles and show Newtonian behaviour (I). As water is removed, the solution pH decreases and the ionic strength increases. The EDL thickness therefore slowly decreases, and screening of the electrostatic repulsion increases. For 0.31 ≤ ϕ p ≤ 0.35, the suspensions become turbid and exhibit viscoelastic (VE) shear thinning behaviour (II), as they progressively flocculate. For 0.35 ≤ ϕ p ≤ 0.47, the suspensions turn transparent again and paste-like, with VE shear thinning behaviour and high elastic modulus (III). At higher particle concentration, the suspensions undergo a glass transition and behave as an elastic brittle solid (IV, ϕ p = 0.51).  相似文献   

5.
In this work, we studied the melt rheology of multigraft copolymers with a styrene–acrylonitrile maleic anhydride (SANMA) terpolymer backbone and randomly grafted polyamide 6 (PA 6) chains. The multi-grafted chains were formed by interfacial reactions between the maleic anhydride groups of SANMA and the amino end groups of PA 6 during melt blending. Because of the phase separation of SANMA and PA 6, the grafted SANMA backbones formed nearly circular domains which were embedded in the PA 6 melt with a diameter in the order of 20 to 40 nm. The linear viscoelastic behaviour of PA 6/SANMA blends at a sufficiently large SANMA concentration displayed the characteristics of the critical gel state, i.e. the power relations G′ ∝ G′′ ∝ ω 0.5. In elongation, the PA 6/SANMA blend at the critical gel state showed a non-linear strain hardening behaviour already at a very small Hencky strain. In contrast to neat PA 6, the elasticity of the PA 6/SANMA blends was strongly pronounced, which was demonstrated by recovery experiments. Rheotens tests agreed with the linear viscoelastic shear oscillations and the measurements using the elongational rheometer RME. Increasing the SANMA concentration led to a larger melt strength and a reduced drawability. The occurrence of the critical gel state can be interpreted by the cooperative motion of molecules which develops between the grafted PA 6 chains of neighbouring micelle-like SANMA domains.  相似文献   

6.
We study the short-time relaxation dynamics of crosslinked and uncrosslinked networks of semi-flexible polymers using diffusing wave spectroscopy (DWS). The networks consist of concentrated solutions of actin filaments, crosslinked with increasing amounts of α-actinin. Actin filaments (F-actin) are long semi-flexible polymers with a contour length 1–100μm and a persistence length of 5–15μm; α-actinin is a small 200kDa homodimer with two actin-binding sites. Using the large bandwidth of DWS, we measure the mean-square-displacement of 0.96μm diameter microspheres imbedded in the polymer network, from which we extract the frequency-dependent viscoelastic moduli via a generalized Langevin equation. DWS measurements yield, in a single measurement, viscoelastic moduli at frequencies up to 105Hz, almost three decades higher in frequency than probed by conventional mechanical rheology. Our measurements show that the magnitude of the small-frequency plateau modulus of F-actin is greatly enhanced in the presence of α-actinin, and that the frequency dependence of the viscoelastic moduli is much stronger at intermediate frequencies. However, the frequency-dependence of loss and storage moduli become similar for both crosslinked and uncrosslinked networks at large frequencies, G′(ω)∝G′′(ω)∝ω0.75±0.08. This high-frequency behavior is due to the small-amplitude, large-frequency lateral fluctuations of actin filaments between entanglements. Received: 20 January 1998 Accepted: 12 February 1998  相似文献   

7.
We report on the steady-state shear viscosity of suspensions of fibres dispersed in Newtonian fluids, in a wide range of volume fractions throughout the dilute and semi-dilute regimes. We show that the apparent shear-thinning behaviour, which is sometimes observed in the semi-dilute regime at intermediate shear rates, is an experimental artefact due to the presence of transient clusters of entangled fibres in the suspensions. At high shear rates, the fibres are aligned and the suspensions exhibit Newtonian behaviour. In this regime, the viscosity is a function of volume fraction and fibre aspect ratio only. The data can be rescaled onto a universal curve using a variable that accounts for the average contribution of the particles to the bulk stress. All these results are discussed in relation to recent theories. Received: 19 January 1999 Accepted: 17 June 1999  相似文献   

8.
Experiments on the modulation characteristics of the wall shear stress τ′-longitudinal velocity u′ and u′−u′ space–time correlations are reported in a forced turbulent channel flow in a wide range of imposed frequencies. The resulting integral and Taylor scale properties are discussed in detail in the low buffer layer under steady and unsteady flow conditions. It is shown that the small-scale turbulence is sensitive to the imposed unsteadiness since the amplitude and phase of the Taylor length scale vary considerably in the imposed frequency range investigated here. The Taylor hypothesis is acceptably valid in steady and unsteady wall layers just above the low buffer layer. Production and instantaneous pressure gradients are mostly responsible for the deviation of the frozen turbulence-state in the viscous and low buffer sublayers.  相似文献   

9.
 Electro-rheological suspensions (ERS) are known to undergo liquid-to-solid transition under the application of an electric field. Long-range interaction between neighboring particles results in sample-spanning particulate structures which behave as soft solids. Here, we studied the rheological expression of this field-induced transition which has many similarities with chemical gelation. This similarity shows in mechanical spectroscopy on a suspension of monodisperse silica in PDMS as model ERS. Upon application of the electric field, dynamic moduli G′, G′′ grow by orders of magnitude and evolve in a pattern which is otherwise typical for gelation of network polymers (random chemical or physical gelation). At the gel point, the slow dynamics is governed by power-law relaxation behavior (frequency-independent tan δ). A low field strength is sufficient to reach the gel point and, correspondingly, the percolating particle structure at the gel point is still very fragile. It can be broken by the imposition of low stress. For inducing a finite yield stress, the field strength needs to be increased further until the long-range electrostatic interaction generates string-like particle alignments which become clearly visible under the optical microscope. The onset of fragile connectivity was defined experimentally by the tan δ method. The ERS was probed dynamically at low frequencies where the transition is most pronounced, and also in steady shear where the rate of structure formation equals the rate of internal breaking. Received: 1 May 2001 Accepted: 11 August 2001  相似文献   

10.
We investigate the relation between the structure and the viscoelastic behavior of a model polymer nanocomposite system based on a mixture of titanium dioxide (TiO2) nanoparticles and polypropylene. Above a critical volume fraction, Φ c, the elasticity of the hybrids dramatically increases, and the frequency dependence of the elastic and viscous moduli reflects the superposition of the independent responses of the suspending polymer melt and of an elastic particle network. In addition, the elasticity of the hybrids shows critical behavior around Φ c. We interpret these observations by hypothesizing the formation of a transient network, which forms due to crowding of particle clusters. Consistent with this interpretation, we find a long-time, Φ-dependent, structural relaxation, which emphasizes the transient character of the structure formed by the particle clusters. For times below this characteristic relaxation time, the elasticity of the network is Φ-independent and reminiscent of glassy behavior, with the elastic modulus, G, scaling with frequency, ω, as Gω 0.3. We expect that our analysis will be useful for understanding the behavior of other complex fluids where the elasticity of the components could be superimposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号