首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this presentation, influences of axial vane swirler on heat transfer augmentation and fluid flow are investigated both experimentally and numerically. The swirl generator is installed at the inlet of the annular duct to generate decaying swirling pipe flow. Three different blade angels of 30°, 45° and 60° were examined. Meanwhile, flow rate was adjusted at Reynolds numbers ranging from 10000 to 30000. Study has been done under uniform heat flux condition and air was used as working fluid. Experimental results confirm that the use of vane swirler leads to a higher heat transfer compared with those obtained from plain tubes. Depending on blade angle, overall Nusselt augmentation is found from 50% to 110% while friction factor increases by the range of 90–500%. Thermal Performance evaluation has been done for test section and test section together with swirler. In both cases, thermal performance increases as vane angle is raised and decreases by growth of Re number. When increasing the blade angle, higher decay rate has been observed for local Nusselt number. In CFD analysis, time-averaged governing equations were solved numerically and RSM model was applied as the turbulence model. Here, the simulation results of axial and tangential velocities, turbulent kinetic energy, wall stresses and swirl intensity are provided. They illustrate the effect of swirling pattern on mean flow and turbulence structure, as well as on improving heat transfer enhancement in the annular duct.  相似文献   

2.
Current research proofs the potential of apparatuses containing minichannel flow structures to intensify gas-liquid-solid contacting processes. The excellent heat and mass transfer in these devices as well as a sharp RTD mainly result from the Taylor flow regime. A proper design of corresponding contactors requires precise information on the provided interfacial areas. However, the characterisation of gas-liquid Taylor flow with industrially relevant fluids at elevated pressure and created by capillary injection devices gained little attention so far.This work analyses adiabatic gas-liquid Taylor flow in a square minichannel of 1.0 mm hydraulic diameter using water, water-glycerol, or water-ethanol mixtures as liquid phase and hydrogen or nitrogen as gas phase to cover a broad range of material parameters. In the mixing zone located within the flow channel, gas was injected into the co-flowing liquid by so-called capillary injectors with variable inner diameter (0.184, 0.317, 0.490 mm).Two different bubble forming mechanisms were identified leading to a complex interaction between physical properties of the fluids, geometrical parameters and the observed gas bubble and liquid slug lengths. According to the Pi-theorem, these lengths were affected by 6 dimensionless groups, namely (uG,s/ uL,s), ReL, WeL, (dIn,CI/ dh), (dOu,CI / dh), and Θ*. Based on more than 370 experimental data, novel correlations to predict gas bubble and liquid slug lengths were developed.  相似文献   

3.
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air–water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam–water annular flow conditions. In each experiment, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using the liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant [Sawant, P.H., Ishii, M., Mori, M., 2008. Droplet entrainment correlation in vertical upward co-current annular two-phase flow. Nucl. Eng. Des. 238 (6), 1342–1352] for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible.Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air–water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air–water, helium–water and air–genklene experimental data measured by Willetts [Willetts, I.P., 1987. Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford]. However, comparison of the correlations with the steam–water data available in literature showed significant discrepancies. It is proposed that these discrepancies might have been caused due to the inadequacy of the liquid film extraction method used to measure the entrainment fraction or due to the change in mechanism of entrainment under high liquid flow conditions.  相似文献   

4.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

5.
In this work, the wall shear stress and the mass transfer coefficient of the gas–liquid two-phase upward slug flow in a vertical pipe are investigated experimentally, using limiting diffusion current probes and digital high-speed video system. In experiments, the instantaneous and averaged characteristics of wall shear stress and mass transfer coefficient are concerned. The experimental results are compared with the numerical results in previous paper of the authors. Both experiment and numerical simulation show that the superficial gas and liquid velocities have an obvious influence on the instantaneous characteristics of the two profiles. The mass transfer coefficient has characteristics similar to the wall shear stress. The instantaneous wall shear stress and mass transfer coefficient profiles have the periodicity of slug flow. The averaged wall shear stress and mass transfer coefficient increase with increased superficial gas velocity. However, there is inconsistency in the variation trends of the averaged wall shear stress and mass transfer coefficient with superficial liquid velocity between experimental result and numerical simulation result, which can be attributed to the difference in flow condition. Moreover, the Taylor bubble length is also another impacting factor. The experimental and numerical results all shows that the product scale can not be damaged directly by the flow movement of slug flow. In fact, the alternative forces and fluctuations with high frequency acting on the pipe wall due to slug flow is the main cause for the slug flow enhanced CO2 corrosion process.  相似文献   

6.
To clarify the impacts of the hydrodynamic boundary layer and the diffusion boundary layer in the near wall zone on gas–liquid two-phase flow induced corrosion in pipelines, the hydrodynamic characteristics of fully developed gas–liquid slug flow in an upward tube are investigated with limiting diffusion current probes, conductivity probes and digital high-speed video system. The Taylor bubble and the falling liquid film characteristics are studied, the effects of various factors are examined, and the experimental results are compared with the data and models available in literature. The length of Taylor bubble, the local void fraction of the slug unit and the liquid slug, the shear stress and mass transfer coefficient in the near wall zone, are all increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity, whereas the length of liquid slug and the liquid slug frequency are changed contrarily. The alternate wall shear stress due to upward gas–liquid slug flow is considered to be one of the major causes for the corrosion production film fatigue cracking. A normalized formula for mass transfer coefficient is obtained based on the experimental data.  相似文献   

7.
Slug flow is one of the representative flow regimes of two-phase flow in micro tubes. It is well known that the thin liquid film formed between the tube wall and the vapor bubble plays an important role in micro tube heat transfer. In the present study, experiments are carried out to clarify the effects of parameters that affect the formation of the thin liquid film in micro tube two-phase flow. Laser focus displacement meter is used to measure the thickness of the thin liquid film. Air, ethanol, water and FC-40 are used as working fluids. Circular tubes with five different diameters, D = 0.3, 0.5, 0.7, 1.0 and 1.3 mm, are used. It is confirmed that the liquid film thickness is determined only by capillary number and the effect of inertia force is negligible at small capillary numbers. However, the effect of inertia force cannot be neglected as capillary number increases. At relatively high capillary numbers, liquid film thickness takes a minimum value against Reynolds number. The effects of bubble length, liquid slug length and gravity on the liquid film thickness are also investigated. Experimental correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number is proposed.  相似文献   

8.
An experimental study has been conducted to determine the effect of twisted-tape swirl generators on adiabatic and diabatic two-phase flow pressure drops in vertical straight tubes. Tape-twist ratios (length for 180° twist/inside tube diameter) of 3.94, 8.94, and 13.92 were tested with R-113 over a range of pressures, mass velocities, qualities, and heat fluxes. Empty tube refcrence data were successfully predicted with a correlation from the literature. The twisted tape data were successfully correlated by using the hydraulic diameter and a single-phase swirl flow friction factor in the empty tube correlation. Data from the literature also were predicted well with this correlation.  相似文献   

9.
The structure of vertical upward slug flow in a pipe is studied. The distribution of the phases in the Taylor bubble zone and the liquid slug zone is investigated by simultaneous measurements with two optical fiber probes. In the Taylor bubble zone the shape of the Taylor bubble and the distribution of the bubble length is reported. In the liquid slug region, the distribution of the void fraction is obtained over a dense grid in both the axial and radial directions. These experimental results shed some light on the hydrodynamics of the two-phase slug flow, in particular regarding the production of the dispersed bubbles and their distribution along the liquid slug.  相似文献   

10.
The infrared thermography technique was used to study the thermal and hydrodynamic phenomena in intermittent two-phase air–water flow in horizontal and inclined tubes at atmospheric pressure. The study was aimed at elucidating the relationship between the hydrodynamic parameters and dryout phenomena. It focuses on the empirical evaluation of the wall temperature distribution in a uniformly heated pipe. The results reveal the existence of dryout phenomena in horizontal pipe flow only. The flow parameter based on the frequency, length and velocity of elongated bubble is presented for the prediction of dryout.  相似文献   

11.
A recent technique of simultaneous particle image velocimetry (PIV) and pulsed shadow technique (PST) measurements, using only one black and white CCD camera, is successfully applied to the study of slug flow. The experimental facility and the operating principle are described. The technique is applied to study the liquid flow pattern around individual Taylor bubbles rising in an aqueous solution of glycerol with a dynamic viscosity of 113×10–3 Pa s. With this technique the optical perturbations found in PIV measurements at the bubble interface are completely solved in the nose and in annular liquid film regions as well as in the rear of the bubble for cases in which the bottom is flat. However, for Taylor bubbles with concave oblate bottoms, some optical distortions appear and are discussed. The measurements achieved a spatial resolution of 0.0022 tube diameters. The results reported show high precision and are in agreement with theoretical and experimental published data.Symbols D internal column diameter (m) - g acceleration due to gravity (m s–2) - l w wake length (m) - Q v liquid volumetric flow rate (m3 s–1) - r radial position (m) - r * radial position of the wake boundary (m) - R internal column radius (m) - U s Taylor bubble velocity (m s–1) - u z axial component of the velocity (m s–1) - u r radial component of the velocity (m s–1) - z distance from the Taylor bubble nose (m) - Z * distance from the Taylor bubble nose for which the annular liquid film stabilizes (m) Dimensionless groups Re Reynolds number ( ) - N f inverse viscosity number ( ) Greek letters liquid film thickness (m) - liquid kinematic viscosity (m2 s–1) - liquid dynamic viscosity (Pa s) - liquid density (kg m–3)  相似文献   

12.
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of ?90?, evaporator temperature of 125?C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.  相似文献   

13.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

14.
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests were performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime).  相似文献   

15.
The flow and local heat transfer around a wall-mounted cube oriented 45° to the flow is investigated experimentally in the range of Reynolds number 4.2 × 103–3.3 × 104 based on the cube height. The distribution of local heat transfer on the cube and its base wall are examined, and it is clarified that the heat transfer distribution under the angled condition differs markedly to that for cube oriented perpendicular to the flow, particularly on the top face of the cube. The surface pressure distribution is also investigated, revealing a well-formed pair of leading-edge vortices extending from the front corner of the top face downstream along both front edges for Re>(1−2)×104. Regions of high heat transfer and low pressure are formed along the flow reattachment and separation lines caused by these vortices. In particular, near the front corner of the top face, pressure suction and heat transfer enhancement are pronounced. The average heat transfer on the top face is enhanced at Re>(1−2)×104 over that of a cube aligned perpendicular to the flow.  相似文献   

16.
Flow patterns, the pressure drag reduction and the heat transfer in a vertical upward air–water flow with the surfactant having negligible environmental impact were studied experimentally in a tube of 2.5 cm in diameter. Visual observations showed that gas bubbles in the air–water solution with surfactant are smaller in size but much larger in number than in pure air–water mixture, at the all flow regimes. The transition lines in the flow regime map for the solution of air–water mixture with surfactant of the 300 ppm concentration are mainly consistent with the experimental data obtained in clear air–water mixture. An additive of surfactant to two-phase flow reduces the total pressure drop and decrease heat transfer, especially in the churn flow regime.  相似文献   

17.
This work proposes a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels to update the widely used three-zone model of Thome et al. (2004). The heat transfer model has a convective boiling nature and predicts the time-dependent variation of the local heat transfer coefficient during the cyclic passage of a liquid slug, an evaporating elongated bubble and a vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method also considering bubble proximity effects, which may limit the radial extension of the film, is included. The minimum liquid film thickness at dryout is set to the channel wall roughness. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies. The 833 slug flow boiling data points cover the fluids R134a, R245fa and R236fa, and channel diameters below 1 mm. The proposed evaporation model predicts more than 80% of the database to within ±30%. It demonstrates a stronger contribution to heat transfer by the liquid slugs and correspondingly less by the thin film evaporation process compared to the original three-zone model. This model represents a new step towards a complete physics-based modelling of the bubble dynamics and heat transfer within microchannels under evaporating flow conditions.  相似文献   

18.
Convective heat transfer in the flow of silver nanofluid through a straight tube with twisted tape inserts was investigated experimentally. This straight tube was used as absorber/receiver tube in parabolic trough collector. The experiments were conducted for Reynolds number range 500 < Re < 6000 with twisted tape inserts of different twist ratio range 0.577 < H/D < 1.732. This experimental study shows that twisted tape inserts enhances heat transfer rate in the tube. The heat transfer coefficient and friction factor in the flow of silver nanofliud with 5 % volume fraction (concentration) are higher compared to the flow of water. From this study, Nusselt number, friction factor and enhancement factor are found as 2.0–3.0 times, 10–48.5 and 135–175 %, respectively with silver nanofliud. Finally new possible correlations for predicting heat transfer and friction factor in the flow of silver nanofliud through the straight tube with twisted tape inserts are proposed.  相似文献   

19.
An experimental investigation has been carried out to find the heat transfer coefficient during condensation of R-134a vapor inside a horizontal tube. Experiments were conducted for the condensation of R-134a inside a plain tube and tubes with different twisted tape inserts. Twisted tapes with different twisted ratios of 6, 9, 12 and 15 were inserted in the refrigerant side, one by one, in the full length of test-condenser. For each inserted tube and the plain tube, test runs were carried out for the mass velocities of 92, 110, 128 and 147 kg/s-m2. An empirical correlation has also been developed to predict the enhanced heat transfer coefficient.  相似文献   

20.
A hydraulic jump is the rapid transition from a supercritical to subcritical free-surface flow. It is characterised by strong turbulence and air bubble entrainment. New air–water flow properties were measured in hydraulic jumps with partially developed inflow conditions. The data set together with the earlier data of Chanson (Air bubble entrainment in hydraulic jumps. Similitude and scale effects, 119 p, 2006) yielded similar experiments conducted with identical inflow Froude numbers Fr 1 = 5 and 8.5, but Reynolds numbers between 24,000 and 98,000. The comparative results showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. The present comparative analysis demonstrated quantitatively that dynamic similarity of two-phase flows in hydraulic jumps cannot be achieved with a Froude similitude. In experimental facilities with Reynolds numbers up to 105, some viscous scale effects were observed in terms of the rate of entrained air and air–water interfacial area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号