首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
冯文杰  Su RKL 《力学学报》2005,37(1):120-124
研究位于功能梯度层和外部均匀材料之间多个环形界面裂纹的扭转冲击问题,功能梯度材料 (FGM)粘结在两种不同的弹性材料之间,功能梯度层和外部材料之间环形界面裂纹的数目是任意的.引进积分变换和位错密度函数将问题化为求解Laplace域里标准的Cauchy奇异积分方程,进而化为求解代数方程;应用Laplace数值反演技术,计算时域里的动应力强度因子(DSIF).考查了结构几何尺度和材料特性对裂尖动态断裂特性的影响.数值结果表明,DSIF存在一个主峰,到达主峰后,在其相应的静态值附近波动并最终趋于稳定;增加FGM的梯度能减小DSIF的峰值.  相似文献   

2.
A mechanical model was established for the antiplane dynamic fracture problem of a functionally graded coating–substrate structure with a coating crack perpendicular to the weak-discontinuous interface. The problem was reduced to a Cauchy singular integral equation by the methods of Laplace and Fourier integral transforms. Erdogan’s collocation method and the Laplace numerical inversion proposed by Miller and Guy were used to calculate the dynamic stress intensity factors. Three conclusions were drawn through parametric studies: (a) unlike the conclusion drawn for an interfacial crack, reducing the weak discontinuity of the interface will not necessarily decrease the dynamic stress intensity factor (DSIF) of the coating crack perpendicular to the interface; (b) increasing the stiffness of the substrate when that of the coating is fixed, or decreasing the stiffness of coating when that of the substrate is fixed, will be beneficial for the reduction of the DSIF of a coating crack perpendicular to the interface; and (c) the free surface has a greater influence on the DSIF than the interface does, and the effect of the interface on the DSIF is greater than that of the material stiffness in the crack-tip region.  相似文献   

3.
This work is concerned with the dynamic response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric time-dependent load. The cracks are assumed to act either as an insulator or as a conductor. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain. A numerical Laplace inversion algorithm is used to determine the dynamic stress and electric displacement factors that depend on time and geometry. A normalized equivalent parameter describing the ratio of the equivalent magnitude of electric load to that of mechanical load is introduced in the numerical computation of the dynamic stress intensity factor (DSIF) which has a similar trend as that for the pure elastic material. The results show that the dynamic electric field will impede or enhance crack propagation in a piezoelectric ceramic material at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the crack length to the ligament between the cracks. The stress and electric displacement intensity factor can be combined by the energy density factor or function to address the fracture of piezoelectric materials under the combined influence of electromechanical loading.  相似文献   

4.
An analysis is performed for the problem of a finite Griffith crack moving with constant velocity along the interface of a two-layered strip composed of a piezoelectric ceramic and an elastic layers. The combined out-of-plane mechanical and in-plane electrical loads are applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The dynamic stress intensity factor(DSIF) is determined, and numerical results show that DSIF depends on the crack length, the ratio of stiffness and thickness, and the magnitude and direction of electrical loads as well as the crack speed. In case that the crack moves along the interface of piezoelectric and elastic half planes, DSIF is independent of the crack speed.  相似文献   

5.
Anti-plane dynamic fracture analysis is presented for functionally graded materials (FGM) with arbitrary spatial variations of material properties. The FGM with the material properties varying continuously in an arbitrary manner is modeled as a multi-layered medium with the elastic modulus and mass density varying linearly in each sub-layer and continuous at the interfaces between two adjacent sub-layers. With this linearly inhomogeneous multi-layered model, the problem of a crack in a graded interfacial zone bonded to two homogeneous half-spaces or in a coating bonded to a homogeneous half-space subjected to the anti-plane shear impact load is investigated. Laplace and Fourier transforms and transfer matrix are applied to reduce the associated mixed boundary value problem to a Cauchy singular integral equation which is solved numerically in the Laplace transformed domain. The dynamic stress intensity factors (DSIF) are obtained by using the numerical technique of Laplace inversion.  相似文献   

6.
The dynamic interaction of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated. By using the Fourier transform, the problem can be solved with the help of a pair of triple integral equations in which the unknown variable is jump of displacement across the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter, the circular frequency of the incident waves and the thickness of the strip upon stress, electric displacement and magnetic flux intensity factors of cracks.  相似文献   

7.
A theoretical treatment of antiplane crack problem of two collinear cracks on the two sides of and perpendicular to the interface between a functionally graded orthotropic strip bonded to an orthotropic homogeneous substrate is put forward. Various internal cracks and crack terminating at the interface and crack crossing the interface configurations are investigated, respectively. The problem is formulated in terms of a singular integral equation with the crack face displacement as the unknown variable. The asymptotic stress field near the tip of a crack crossing the interface is examined, and it is shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case, the “kink” in material property at the interface does not introduce any singularity. Numerical calculations are carried out, and the influences of the orthotropy and nonhomogeneous parameters and crack interactions on the mode III stress intensity factors are investigated.  相似文献   

8.
Fracture analysis is performed on a layered piezoelectric sensor possessing a Kelvin-type viscoelastic interface. An electrically permeable anti-plane crack is situated in the piezoelectric layer and perpendicular to the interface. The crack problem is solved by the methods of integral transform and Cauchy singular integral equation. The variations of the dynamic stress intensity factor (DSIF) vs. physical and geometrical parameters are investigated. At the beginning of creep and relaxation, larger viscosity coefficient always induces smaller DSIF. With time elapsing, the effect of viscosity coefficient becomes weaker and weaker. When time approaches infinity, the viscous effect disappears, and the DSIF converges to a value corresponding to the case of an elastic interface. The effect of the viscoelastic interface on the fracture behavior of the piezoelectric layer also depends on the substrate thickness. To some extent, thicker substrate may intensify the effect of the interface.  相似文献   

9.
Some composite materials are constructed of two dissimilar half-planes bonded by a nonhomogeneous elastic layer. In the present study, a crack is situated at the interface between the upper half-plane and the bonding layer of such a material, and another crack is located at the interface between the lower half-plane and the bonding layer. The material properties of the bonding layer vary continuously from those of the lower half-plane to those of the upper half-plane. Incoming shock stress waves impinge upon the two interface cracks normal to their surfaces. Fourier transformations were used to reduce the boundary conditions for the cracks to two pairs of dual integral equations in the Laplace domain. To solve these equations, the differences in the crack surface displacements were expanded in a series of functions that are zero-valued outside the cracks. The unknown coefficients in the series were solved using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress intensity factors were calculated numerically for selected crack configurations.  相似文献   

10.
The anti-plane impact fracture analysis was performed for a weak-discontinuous interface in a symmetrical functionally gradient composite strip. A new bi-parameter exponential function was introduced to simulate the continuous variation of material properties. Using Laplace and Fourier integral transforms, we reduced the problem to a dual integral equation and obtained asymptotic analytical solution of crack-tip stress field. Based on the numerical solution of the second kind of Fredholm integral equation transformed from the dual integral equation, the effects of the two non-homogeneity parameters on DSIF were discussed. It was indicated that the relative stiffness of the interface and the general stiffness of the whole structure are two important factors affecting the impact fracture behavior of the weak-discontinuous interface. The greater the relative stiffness of the interface is, the higher the value of the dynamic stress intensity factor will be. The greater the general stiffness of the whole structure is, the shorter the time for DSIF to arrive at the peak value and then to stabilize to the steady one. If the general stiffness of the whole structure is great enough, there will be an oscillation between the peak and steady values of DSIF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号