首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 115 毫秒
1.
超疏水小球低速入水空泡研究   总被引:3,自引:4,他引:3  
黄超  翁翕  刘谋斌 《力学学报》2019,51(1):36-45
物体入水问题是一类复杂的流固耦合问题,具有广泛的工程应用背景.物体在跨越自由液面入水的过程中,在一定的条件下,会向水中卷入空气形成空泡,空泡的运动还可能形成指向物体的射流,从而对物体的受力及其运动过程产生影响.超疏水表面能够在物体入水过程中形成多尺度流固耦合作用,进而影响物体的运动和宏观流动现象.而对于小尺度的小球低速入水问题,表面和界面力往往起主导作用.为了在更广的参数空间获得超疏水小球入水空泡类型和小球的运动特性,采用高速摄影实验方法,研究了半径0.175$\sim$10mm的超疏水小球低速入水及空泡动力学行为,获得了小球漂浮振荡、准静态空泡、浅闭合空泡、深闭合空泡和表面闭合空泡5种类型的动力学行为,探讨了这些运动行为与韦伯数We}和邦德数Bo之间的关系,并推导了小球漂浮振荡与下沉现象的无量纲关系.研究结果表明:超疏水小球的入水及空泡动力学行为主要与韦伯数We和邦德数Bo有关.在邦德数Bo $<$ $O$ (10$^{-1})$范围内,表面张力对流动的影响显著,随着韦伯数We}的增大,小球入水及空泡动力学行为依次经历漂浮振荡、准静态闭合、浅闭合、深闭合和表面闭合;在邦德数$O$ (10$^{-1})$<$ Bo} $<$O(1)$范围内,漂浮振荡现象不再发生;当邦德数$Bo>O(1)$后,浅闭合现象也不再发生;小球漂浮振荡与下沉现象的临界关系可以用相似律关系描述.   相似文献   

2.
严晨祎  陈瑛 《力学学报》2022,54(4):1012-1025
圆球旋转入水过程对于基于先导物投放的新型入水降载方式具有重要研究价值. 采用大涡模拟方法结合均质多相流模型和VOF界面捕捉算法, 对低弗劳德数条件下疏水圆球高速旋转入水的自由运动过程进行了数值模拟, 研究了转速对入水空泡演化、流场结构和水动力特性的影响. 采用动网格与滑移网格技术实现圆球的自由运动, 并基于试验结果对比验证了数值模拟的可靠性与正确性. 旋转运动的升力效应导致圆球入水弹道发生偏转并从水面携带横向楔形射流侵入空泡内部. 采用入水砰击速度与转速进行归一化分析, 结果表明入水转速的增加显著改变了圆球的动力特性: 水平方向的速度和位移以及升力峰值都随入水转速的增加而变大, 但升力峰值受到入水速度的限制; 而垂直方向的速度和加速度以及空泡断裂深度几乎不受转速增加的影响, 并且空泡深闭合发生前圆球转速变化不大. 入水转速的增加也使液面飞溅环和空泡断裂的非对称性增强, 在较低转速时发生空泡表面闭合, 而在较高转速时则发生空泡深闭合. 对于空泡深闭合模式, 入水转速的增加带来更强的横向楔形射流, 并且抑制了空泡断裂产生的高压以及相应涡结构的生成, 致使圆球在入水砰击阶段承受更低的侧向压力.   相似文献   

3.
ABSTRACT

A fast mesh deformation method for propeller flow is developed based on the elastic solid method. The flow field of a propeller is assumed to be fulfilled with a kind of pseudo elastic solid which does not influence the flow. The vibration equation for the propeller blade-pseudo elastic solid system is derived. During fluid-structure coupling, the nodal displacement for the blade and the flow mesh is computed by modal superposition of the first several modes. Fluid-structure coupling is performed for a highly skewed propeller. The computing time for the dynamic mesh by the present method is about 0.017% of the computing time by the existing elastic solid method. The computing time for the fluid-structure coupling using the present method is 52% less than the computing time by the existing elastic solid method.  相似文献   

4.
5.
The impact of a rigid sphere on a homogeneous, isotropic elastic half-space in the absence of friction and adhesion is considered. The influence of the superseismic stage immediately following the moment of first contact upon the impact process is investigated in the frame of the Hertzian impact theory. The first order asymptotic approximation for the contact force in a three-dimensional dynamic contact problem with the slowly moving contact zone boundary is obtained and the corresponding asymptotic model of impact is developed. The motion of the indenter as it indents and rebounds from the elastic medium is analytically described. Explicit formulas are derived for the peak indentation depth, contact time, and rebound velocity as functions of the initial impact velocity, indenter mass, and characteristics of the elastic half-space.  相似文献   

6.
Abstract

To overcome the problem of some ill-posed inverse problem of force reconstruction, which is caused by the noise in the measured responses and small singular values of the structure, a technology of force reconstruction based on a hybrid method of singular spectral analysis (SSA) and the Landweber regularization method is proposed in this study for the first time. The SSA is used to filter the structural response before using Landweber regularization. A new choice method of phase space reconstruction dimension is theoretically proposed, and the minimum embedding dimension is determined by the concept of optimizing difference spectrum theory. The feasibility of this method was demonstrated through three kinds of force reconstructions. The numerical simulation results and an acoustic vibration experiment demonstrated that the proposed method is more effective than the traditional method.

Communicated by Wei-Chau Xie.  相似文献   

7.
The purpose of this work is to show that a linearized implicit scheme for the flow resolution can be an efficient and accurate method for solving fluid-structure interaction. The fluid is modeled by the Euler equations in two dimensions and the structure by a one (free piston) or a two (NACA0012 airfoil) degrees of freedom system. The schemes are developed using a finite volume/finite element formulation and, stating the moving boundary problem in the space-time domain, the Riemann solver is generalized in a suitable manner. Assuming a modal decomposition for the structure's response, an analytical solution to the equation of motion is obtained.

The effects of the linearized implicit scheme on the aeroelastic response are demonstrated on the free piston and the NACA 0012 airfoil problems. In the latter case, we focus on the capability of the linearized implicit scheme to accurately predict the stability limit of the coupled response (wing flutter analysis). Although the above analysis is performed using a rigid transformation, a robust moving mesh strategy is presented for more general 2-D and 3-D deformations.  相似文献   

8.
We describe the formulation of a method for fluid-structure interaction involving the coupling of moving and/or flexible solid structures with multiphase flows in the framework of the Level Contour Reconstruction Method. We present an Eulerian-based numerical procedure for tracking the motion and interaction of a liquid-gas interface with a fluid-solid interface in the Lagrangian frame together with the evaluation of the fluid transport equations coupled to those for the solid transport, namely the left Cauchy-Green strain tensor field, in the Eulerian frame. To prevent excessive dissipation due to the convective nature of the solid transport equation, a simple incompressibility constraint for the strain field is enforced. A single grid structure is used for both the fluid and solid phases which allows for a simple and natural coupling of the fluid and solid dynamics. Several benchmark tests are performed to show the accuracy of the numerical method and which demonstrate accurate results compared to several of those in the existing literature. In particular we show that surface tension effects including contact line dynamics on the deforming solid phase can be properly simulated. The three-phase interaction of a droplet impacting on a flexible cantilever is investigated in detail. The simulations follow the detailed motion of the droplet impact (and subsequent deformation, breakup, and fall trajectory) along with the motion of the deformable solid cantilever due to its own weight as well as due to the force of the droplet impact.  相似文献   

9.
We perform a mathematical analysis of the steady flow of a viscous liquid, L{\mathcal{L}} , past a three-dimensional elastic body, B{\mathcal{B}} . We assume that L{\mathcal{L}} fills the whole space exterior to B{\mathcal{B}} , and that its motion is governed by the Navier–Stokes equations corresponding to non-zero velocity at infinity, v . As for B{\mathcal{B}} , we suppose that it is a St. Venant–Kirchhoff material, held in equilibrium either by keeping an interior portion of it attached to a rigid body or by means of appropriate control body force and surface traction. We treat the problem as a coupled steady state fluid-structure problem with the surface of B{\mathcal{B}} as a free boundary. Our main goal is to show existence and uniqueness for the coupled system liquid-body, for sufficiently small |v |. This goal is reached by a fixed point approach based upon a suitable reformulation of the Navier–Stokes equation in the reference configuration, along with appropriate a priori estimates of solutions to the corresponding Oseen linearization and to the elasticity equations.  相似文献   

10.
Based on linearized 2-D Navier-Stokes equation, a Laplace transform-boundary element coupling method for viscous fluid-structure impact analysis is proposed. Under assumption of incompressibility for the fluid, the corresponding equivalent boundary integral equation in terms of the potential function and stream function is first established by Lamb's transform in the Laplace transform domain. It enables us to solve impact water problems in frequency domain by the boundary element method, in which the effect of viscous flow on the dynamic response can be taken into account. Then a complete solution of the problem under consideration in time domain is obtained by means of Durbin's formulas for the numerical inversion of the Laplace transform. Finally, a practical example is given to confirm the validity of the present method. Project supported by the National Defence Foundation of Science & Technology of China (No. J14. 8. 1. JW0515).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号