首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Prediction of forming limit in sheet metal forming is among the most important challenges confronting researchers. In this paper, a fully coupled elastic-plastic-damage model has been developed and implemented into an explicit code. Due to the adoption of the plane stress and finite strain theories, model can predict deformation and damage of parts quickly and accurately. Also, damage initiation, propagation, and fracture in some operations are predicted and validated with experiments. It is concluded that finite strain combined with continuum damage mechanics can be used as a quick tool to predict ductile damage, fracture, and forming limits in sheet metal forming processes.  相似文献   

2.
In order to investigate the shock ignition of high energy solid explosives by shock waves,we carry out Lagrangian experiments with 2-D Lagrangian technique which uses composite manganin-constantan(CMC).The efects of the shock sensitivity of pressed solid high explosives,TNT,and the efect of the lateral rarefaction wave were studied.Based on the measured pressure histories and the radial displacements,we formulate the Ignition and Growth reactive flow models for the pressed TNT.The shock initiation process simulated by Ignition and Growth model agreed well with experimental data.This pressed TNT model can be applied to shock initiation scenarios which are highly unpredictable and have not been or cannot be tested experimentally.  相似文献   

3.
The constantly developing fiuidized combustion technology has become competitive with a conventional pulverized coal (PC) combustion. Circulating fluidized bed (CFB) boilers can be a good alternative to PC boilers due to their robustness and lower sensitivity to the fuel quality. However, appropriate engineering tools that can be used to model and optimize the construction and operating parameters of a CFB boiler still require development. This paper presents the application of a relatively novel hybrid Euler-Lagrange approach to model the dense gas-solid flow combined with a combustion process in a large-scale indus- trial CFB boiler. In this work, this complex flow has been resolved by applying the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) code. To accurately resolve the multiphase flow, the original CFD code has been extended by additional user-defined functions. These functions were used to control the boiler mass load, particle recirculation process (simplified boiler geometry), and interphase hydrodynamic properties. This work was split into two parts. In the first part, which is referred to as pseudo combustion, the combustion process was not directly simulated. Instead, the effect of the chemi- cal reactions was simulated by modifying the density of the continuous phase so that it corresponded to the mean temperature and composition of the flue gases, In this stage, the particle transport was simu- lated using the standard Euler-Euler and novel hybrid Euler-Lagrange approaches, The obtained results were compared against measured data, and both models were compared to each other. In the second part, the numerical model was enhanced by including the chemistry and physics of combustion. To the best of the authors' knowledge, the use of the hybrid Euler-Lagrange approach to model combustion is a new engineering application of this model, In this work, the combustion process was modeled for air-fuel combustion. The simulation results were compared with experimental data.  相似文献   

4.
The information stored in working memory can be transformed into the system of long-term memory due to the long-term potential(LTP) mechanism. The θ-burst stimulation(TBS) can be used as an LTP induction protocol in some experiments,but it has not been used in the models related to memory. In this work, an improved Camperi-Wang(C-W) model with the Ca2+subsystem-induced bistability is adopted,and the TBS is simulated to be the initial stimuli of this model. With the evolution of the effects of the stimuli properties such as the cycle, the amplitude, and the duty ration on the memory mechanism of this model, the TBS can be adopted to activate working memory models and produce long-term memory. The study helps to propose the relationship between working memory and long-term memory, which lays a theoretical basis for the study of the neural mechanism of long-term memory.  相似文献   

5.
Ultrasonic beam steering using Neumann boundary condition in multiplysics   总被引:1,自引:0,他引:1  
The traditional one-dimensional ultrasonic beam steering has time delay and is thus a complicated problem. A numerical model of ultrasonic beam steering using Neumann boundary condition in multiplysics is presented in the present paper. This model is based on the discrete wave number method that has been proved theoretically to satisfy the continuous conditions. The propagating angle of novel model is a function of the distance instead of the time domain. The propagating wave fronts at desired angles are simulated with the single line sources for plane wave. The result indicates that any beam angle can be steered by discrete line elements resources without any time delay.  相似文献   

6.
In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theoretical and simulational results provides a test to the validity of the assumptions made in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The following conclusion has been drawn. The theory based on the averaged model works well for the lateral motion of the dronefly. For the hawkmoth, relatively large quantitative differences exist between theory and simulation. This is because the lateral non-dimensional eigenvalues of the hawkmoth are not very small compared with the non-dimensional flapping frequency (the largest lateral non-dimensional eigenvalue is only about 10% smaller than the non-dimensional flapping frequency). Nevertheless, the theory can still correctly predict variational trends of the dynamic properties of the hawkmoth’s lateral motion.  相似文献   

7.
A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.  相似文献   

8.
This paper presents the application of anisotropic damage theory to the study of forming limit diagram of A12024T3 aluminum alloy sheet. In the prediction of limiting strains of the aluminum sheet structure, a finite element cell model has been constructed. The cell model consists of two phases, the aluminum alloy matrix and the intermetallic cluster. The material behavior of the aluminum alloy matrix is described with a fully coupled elasto-plastic damage constitutive equation. The intermetallic cluster is assumed to be elastic and brittle. By varying the stretching ratio, the limiting strains of the sheet under biaxial stretching have been predicted by using the necking criterion proposed. The prediction is in good agreement with the experimental findings. Moreover, the finite element cell model can provide information for understanding the microscopic damage mechanism of the aluminum alloy. Over-estimation of the limit strains may result if the effect of material damage is ignored in the sheet metal forming study.  相似文献   

9.
Representative volume element (RVE) method and asymptotic homogenization (AH) method are two widely used methods in predicting effective properties of periodic materials. This paper develops a novel implementation of the AH method, which has rigorous mathematical foundation of the AH method, and also simplicity as the RVE method. This implementation can be easily realized using commercial software as a black box, and can use all kinds of elements available in commercial software to model unit cells with rather complicated microstructures, so the model may remain a fairly small scale. Several examples were carried out to demonstrate the simplicity and effectiveness of the new implementation.  相似文献   

10.
Shape memory alloys(SMAs)have been explored as smart materials and used as dampers,actuator elements,and smart sensors.An important character of SMAs is its ability to recover all of its large deformations in mechanical loading-unloading cycles without showing permanent deformation.This paper presents a stress-induced phenomenological constitutive equation for SMAs,which can be used to describe the superelastic hysteresis loops and phase transformation between Martensite and Austenite.The Martensite fraction of SMAs is assumed to be dependent on deviatoric stress tensor.Therefore,phase transformation of SMAs is volume preserving during the phase transformation.The model is implemented in large deformation finite element code and cast in the updated Lagrangian scheme.In order to use the Cauchy stress and the linear strain in constitutive laws,a frame indifferent stress objective rate has to be used.In this paper,the Jaumann stress rate is used.Results of the numerical experiments conducted in this study show that the superelastic hysteresis loops arising with the phase transformation can be effectively captured.  相似文献   

11.
The boiling heat transfer experiments have been carried out in vertical narrow annular channels with pure water. A two-dimensional homogeneous turbulence model of boiling flow has been developed and solved numerically to yield pressure gradient, and velocity, thermal and turbulence fields, together with local heat transfer coefficient along the length of the tube. Predictions are compared with the data of experiments and agreed well with it. The model results show that the heat transfer coefficient increases as the gap size decreases in annular channels. This model can be used to predict heat transfer of boiling flow in narrow channels.  相似文献   

12.
Niebergall  M.  Hahn  H. 《Nonlinear dynamics》1997,13(4):361-372
Standard experiments for identifying inertia parameters of a rigid body only provide a subset of the inertia parameters of the body [1–10]. In addition, they do not use in the estimation process the complete information included in the equations of motion of the rigid test body. The objective of the work described in this paper is the simultaneous, automatic experimental identification of the ten inertia parameters of a rigid body using the complete information hidden in the nonlinear model equations of the test body. This task has been solved in several steps:– mathematical modelling of the special motions of a rigid body in space. These model equations have been mapped into a form suitable for identification purposes (identification hypothesis)– design of a special measurement robot for performing the identification experiments– laboratory experiments providing test data used for the identification experiments– identification of the inertia parameters and accuracy tests.The accuracy of the identified parameters is satisfactory.  相似文献   

13.
According to standard textbooks on compressible fluid dynamics, a shock wave is formed by an accumulation of compression waves. However, the process by which an accumulated compression wave grows into a shock wave has never been visualized. In the present paper, the authors tried to visualize this process using a model wedge with multiple steps. This model is useful for generating a series of compression waves and can simulate a compression process that occurs in a shock tube. By estimating the triple-point trajectory angle, we demonstrated visually that an accumulated compression wave grows into a shock wave. Further reflection experiments over a rough-surface wedge confirmed the tendency for the triple point trajectory angle to reach the asymptotic value s in the end.This work was first presented at the Symposium on Shock Waves, Japan 2002  相似文献   

14.
光弹性等倾线获取的图像处理技术   总被引:2,自引:2,他引:2  
张东升 《实验力学》1993,8(2):132-136,150
提出一种对数微分法,有效地解决了光弹性实验中等倾线的提取问题,不仅可消除平面偏振光场中等差线对等倾线的影响,而且能高精度地提取任意复杂受力模型等倾线.最后给出了等倾线提取及精度分析的两个实例,实验证明;本方法具有广阔的应用前景.  相似文献   

15.
Red blood cell membrane is highly elastic and proper modeling of this elasticity is essential for biomedical applications that involve computational experiments with blood flow. Inseparable and often some of the most difficult parts of modeling process are verification and validation. In this work, we present a revised model, which uses a spring network to represent the cell membrane immersed in a fluid and has been successfully used in blood flow simulations. We demonstrate the validation steps by first deriving the theoretical relations between the bulk properties of elastic membranes—shear modulus and area compressibility modulus—and parameters of the model that enter the nonlinear stretching and local area conservation computational moduli. We verify the theoretically derived relations using computer simulations of deformable triangular mesh. We calibrate the model by performing a computational version of the optical tweezers experiment. And finally, we validate the modeled cell behavior by investigating the cell rotation frequency when it is subjected to shear flow and cell deformation in narrow channels. The supplementary material contains an extensive dataset that can be used for setting different elastic properties for each cell in simulations of dense suspensions, while still conforming to the biological data. This work contains a complete model development process: From modelling of basic mechanical concepts (the spring network) and advanced biomechanical concepts (such as elasticity of the membrane), through calibration process towards the final stage of model validation.  相似文献   

16.
Measurements and observations have been made when annular flow divides at a vertical T. This work has extended earlier experiments in covering the entire range of take off. From the observations and measurements, three ways in which the liquid can be diverted into the side arm have been identified. A modification of an earlier model has been produced which correctly allows for two of the three phenomena.  相似文献   

17.
Filled elastomers usually show a pronounced viscoelastic behaviour with long relaxation times. The basic elasticity of the material represents the basis for the complete viscoelastic material model. The important problem is that the long relaxation times lead to a very difficult experimental procedure in order to get the appropriate experimental data. An adequate pretreatment of the material can significantly reduce the experimental duration. This effect has been seen for different types of filled elastomers and has been investigated in detail for a carbon black-filled ethylene propylene diene monomer (EPDM). In the present work, the single steps in the development of the material model for this EPDM are presented, including the basic elasticity, viscoelastic behaviour for moderate strain rates and the Payne effect as a softening effect. An adequate pretreatment can reduce the experimental duration to get the basic elasticity. By using the material model, an optimisation of this experimental pretreatment process is determined for uniaxial loadings. The result of this optimisation can also be seen for different kinds of filled elastomers. Finally, the question whether these conclusions can also be transferred to biaxial deformations is discussed and experimentally examined.  相似文献   

18.
Decoupled implementation of data assimilation methods has been rarely studied. The variational ensemble Kalman filter has been implemented such that it needs not to communicate directly with the model, but only through input and output devices. In this work, an open multi‐functional three‐dimensional (3D) model, the coupled hydrodynamical‐ecological model for regional and shelf seas (COHERENS), has been used. Assimilation of the total suspended matter (TSM) is carried out in 154 km2 lake Säkylän Pyhäjärvi. Observations of TSM were derived from high‐resolution satellite images of turbidity and chrolophyll‐a. For demonstrating the method, we have used a low‐resolution model grid of 1 km. The model was run for a period from May 16 to September 14. We have run the COHERENS model with two‐dimensional (2D) mode time steps and 3D mode time steps. This allows COHERENS to switch between 2D and 3D modes in a single run for computational efficiency. We have noticed that there is not much difference between these runs. This is because satellite images depict the derived TSM for the surface layer only. The use of additional 3D data might change this conclusion and improve the results. We have found that in this study, the use of a large ensemble size does not guarantee higher performance. The successful implementation of decoupled variational ensemble Kalman filter method opens the way for other methods and evolution models to enjoy the benefits without having to spend substantial effort in merging the model and assimilation codes together, which can be a difficult task. © 2016 The Authors. International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.  相似文献   

19.
孔隙网络模型广泛地用于同多孔介质有关的微观模拟中. 本文简介了利用网络模型研究储层渗流规律的基本思想、主要步骤以及网络模型同其它微观模型相比较的优缺点, 总结了在微观渗流研究中使用的两大类网络模型(准静态网络模型和动态网络模型)的特征及其适用范围, 综述了目前网络模型在研究渗流中的应用现状以及国内外研究比较活跃的几个方面,最后分析了网络模型今后的发展趋向.   相似文献   

20.
We have derived a constitutive equation to explain the extensional dynamics of oligomer-diluted monodisperse polymers, if the length of the diluent has at least two Kuhn steps. These polymer systems have a flow dynamics which distinguish from pure monodisperse melts and solutions thereof, if the solvent has less than two Kuhn steps, e.g. is not a chain. The constitutive equation is based on a phenomenological tube-based model within the methodology of the molecular stress function approach. The nonlinear dynamics have been explained as a consequence of a constant thermal interchain pressure originating from the short polymer chains (e.g. the oligomers) on the wall of the tube containing the long chains. The nonlinear dynamics are uniquely defined by the Rouse time and the maximal extensibility of the long polymer chains. Both are linked to the entanglement length. The relation between the Rouse times and entanglements have been established based on published extensional experiments on nearly monodisperse polystyrene melts. The constitutive equation has shown agreement with the experimental startup of and steady extension data from Huang et al. (Macromolecules 46:5026–5035, 2013a) based on 285 and 545 kg/mol polystyrenes diluted in styrene oligomers containing 3.3 (1.92 kg/mol) and 7.3 (4.29 kg/mol) Kuhn steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号