首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
G. A. Al'ev 《Fluid Dynamics》1983,18(2):296-299
The problem of subsonic, transonic, and supersonic separation flow of water past a circular cone of finite length is solved. The water is assumed to be an ideal compressible fluid. A steady flow picture is obtained in a process of stabilization with respect to the time by means of a two-dimensional finite-difference scheme [1]. The dependence of the drag coefficient on the Mach number of the oncoming flow, the distribution of the pressure over the conical surface, and the shape of the free surface formed behind the cone are investigated.  相似文献   

2.
水流冲击管道内滞留气团现象的VOF模型仿真分析   总被引:1,自引:1,他引:0  
针对复杂管道系统内水流冲击滞留气团现象,采用VOF模型(Volume of Fluid Model)进行了数值模拟计算,并与一维模型进行了比较计算分析,结果表明:系统的最大压力并不总是气团的最大压力,有可能还会叠加水体对管壁的撞击而形成的突然升高压力.与实验实测结果的比较分析表明:采用VOF模型,能够较精细地仿真水流冲击滞留气团现象的气团形态、流场结构以及压力分布等的变化过程,其压力数值计算结果与实验实测基本吻合,其计算误差明显小于现有一维模型的计算误差,是深入研究该复杂瞬变流现象的有效方法.  相似文献   

3.
The authors consider the problem of supersonic unsteady flow of an inviscid stream containing shock waves round blunt shaped bodies. Various approaches are possible for solving this problem. The parameters in the shock layer on the axis of symmetry have been determined in [1, 2] by using one-dimensional theory. The authors of [3, 4] studied shock wave diffraction on a moving end plane and wedge, respectively, by the through calculation method. This method for studying flow around a wedge with attached shock was also used in [5]. But that study, unlike [4], used self-similar variables, and so was able to obtain a clearer picture of the interaction. The present study gives results of research into the diffraction of a plane shock wave on a body in supersonic motion with the separation of a bow shock. The solution to the problem was based on the grid characteristic method [6], which has been used successfully to solve steady and unsteady problems [7–10]. However a modification of the method was developed in order to improve the calculation of flows with internal discontinuities; this consisted of adopting the velocity of sound and entropy in place of enthalpy and pressure as the unknown thermodynamic parameters. Numerical calculations have shown how effective this procedure is in solving the present problem. The results are given for flow round bodies with spherical and flat (end plane) ends for various different values of the velocities of the bodies and the shock waves intersected by them. The collision and overtaking interactions are considered, and there is a comparison with the experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 141–147, September–October, 1984.  相似文献   

4.
At around the critical Reynolds number Re = (1.5–4.0)·105 there is an abrupt change in the pattern of transverse subsonic flow past a circular cylinder, and the drag coefficient Cx decreases sharply [1]. A large body of both experimental and computational investigations has now been made into subsonic flow past a cylinder [1–4]. A significant contribution to a deeper understanding of the phenomenon was made by [4], which gives a physical interpretation of a number of theoretical and experimental results obtained in a wide range of Re. Nevertheless, the complicated nonstationary nature of flow past a cylinder with separation and the occurrence of three-dimensional flows when two-dimensional flow is simulated in wind tunnels do not permit one to regard the problem as fully studied. The aim of the present work was to make additional experimental investigations into transverse subsonic flow past a cylinder and, in particular, to study the possible asymmetric stable flow regimes near the critical Reynolds number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 154–157, March–April, 1980.  相似文献   

5.
We consider the problems of propagation of elastic and elastoviscoplastic waves in laminated and fiber composites on the basis of the two-velocity model proposed in [1]. We study plane waves propagating parallel to the fibers and waves propagating in the perpendicular direction. We compare our solutions with the experimental results presented in the literature [2, 3] for several specific composites (carbon-filled plastics, boron plastics, and wolfram fibers in aluminum matrix). The coincidence between the theoretical results and experimental data is shown to be good. To understand the typical features of propagation of nonstationary waves in composites, we solved several one-dimensional problems about the propagation of both elastic and elastoviscoplastic waves in laminated and fiber composites. We compare the solutions obtained using the one-velocity and two-velocity models [1, 4] with the results of experiments and the results obtained in the literature using different models, which permits estimating the accuracy of both models and the numerical method in question. We use the numerical method of characteristics to improve the accuracy of calculations in the solution of the resulting systems of hyperbolic equations.  相似文献   

6.
In the region of transition from a two-dimensional laminar boundary layer to a turbulent one, three-dimensional flow occurs [1–3]. It has been proposed that this flow is formed as the result of nonlinear interaction of two-dimensional and three-dimensional disturbances predicted by linear hydrodynamic stability theory. Using many simplifications, [4, 5] performed a calculation of this interaction for a free boundary layer and a boundary layer on a wall with a very coarse approximation of the velocity profile. The results showed some argreement with experiment. On the other hand, it is known that disturbances of the Tollmin—Schlichting wave type can be observed at sufficiently high amplitude. This present study will use the method of successive linearization to calculate the primary two- and three-dimensional disturbances, and also the average secondary flow occurring because of nonlinear interaction of the primary disturbances. The method of calculation used is close to that of [4, 5], the disturbance parameters being calculated on the basis of a Blazius velocity profile. A detailed comparison of results with experimental data [1] is made. It developed that at large disturbance amplitude the amplitude growth rate differs from that of linear theory, while the spatial distribution of disturbances agree s well with the distribution given by the natural functions and their nonlinear interaction. In calculating the secondary flow an experimental correction was made to the amplitude growth rate.  相似文献   

7.
A method of solving three-dimensional flow problems with the aid of two-dimensional solutions, which can be used for any Reynolds numbers, is proposed. The method is based on the use of similarity relations obtained in the theoretical analysis of the approximate analytic solution of the equations of a three-dimensional viscous shock layer. These relations express the heat flux and the friction stress on the lateral surface of a three-dimensional body in terms of the values on the surface of an axisymmetric body. The accuracy is estimated by comparing the results with those of a numerical finite-difference calculation of the flow past bodies of various shapes. Similar similarity relations were previously obtained in [1] for the plane of symmetry of a blunt body.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 111–118, November–December, 1991.The authors are grateful to G. A. Tirskii for his interest in their work.  相似文献   

8.
9.
The one-dimensional time-dependent problem of evaporation from a plane body surface into a half-space filled by a gas (condensed phase vapor) upon a sudden increase in the body surface temperature is studied. The evaporation coefficient is the problem parameter and may take arbitrary values within the limits from zero to unity. The problem is formulated for the kinetic equation and solved by the finite-difference method. It is shown that a deviation of the evaporation coefficient from unity considerably modifies the gas phase flow pattern. However, the evaporation rate divided by the rate of evaporation into a vacuum at the given surface temperature is only weakly dependent on the evaporation coefficient.  相似文献   

10.
Numerous authors have carried out rather extensive studies in the last twenty to thirty years of the problem of the interaction of shock and blast waves with obstacles in their paths. Owing to the complexity of the problem, they assumed certain limiting cases for the shock wave interactions in which the parameters behind the shock wave were usually taken to be constants. The first wave diffraction studies involving variable parameters behind the front were presented in [1, 2], wherein a development of the theory of “short waves” (blast waves at a substantial distance from the center of an explosion) and their reflection from a planar surface was given. The theory of short waves assumes that the jump in pressure at the wave front and the region over which the parameters vary are small. The problem concerning reflection of a blast wave from a surface was also considered in [3, 4], wherein a solution in the region behind the reflected wave was obtained at initial times. The initial stage in the reflection of a blast wave from a planar, cylindrical, or spherical surface (the one-dimensional case) was studied in [5]. In this paper we investigate the interaction of a spherical blast wave, resulting from a point explosion, with a planar surface; we consider both regular and non-regular reflection stages. In solving this problem we use S. L. Godunov's finite-difference method. We obtain numerical solutions for various values of the shock strength at the instant of its encounter with the surface. We present the pressure fields in the flow regions, the pressure distribution over the surface at various instants of time, and the trajectories of the triple point. The parameter values at the front of the reflected wave are compared with results obtained from the theory of regular reflection of shock waves.  相似文献   

11.
The results are given of a finite-difference calculation which augment previously known data and enable one in conjunction with the results of [1, 2] to approximate the time-dependent values of the pressure on the surface of a cylinder for the case when the shock front is parallel to the cylinder axis. The obtained approximation is valid in the interval of time from the instant at which the wave touches the cylinder until the disturbance reaches the rear stagnation point of the cylinder. The obtained expressions can be used in engineering calculations to determine the nonstationary distribution of the pressure over the surface of the cylinder and the force which acts in the direction of motion of the wave. The intensity of the wave and the specific heat ratio can vary in fairly wide ranges.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 179–184, July–August, 1980.I thank L. E. Taraskina for assistance in the calculations and the evaluation of the results.  相似文献   

12.
Low-frequency axisymmetric vibrations of the surface of a slender body in a sonic flow are considered. The distribution of the stationary longitudinal velocity on the body is assumed to be linear. The linear equation with variable coefficients for the nonstationary part of the velocity potential is solved by two methods: by separation of the variables, as was done in [1] for a two-dimensional flow, and by the method of superposition of sources. Particular solutions with the required singularity are obtained.Translated from Izvestiya Akaderaii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 151–154, March–April, 1980.  相似文献   

13.
Numerical predictions of the flow distribution in parallel and reverse flow manifold systems have been obtained by a novel finite-difference procedure. A one-dimensional elliptic formulation is proposed. An iterative numerical scheme solves the differential equations for momentum in the longitudinal direction and continuity, while in the lateral direction an integral equation for momentum is solved. The predicted pressure distributions compare well with the available experimental results. A parametric computation has been performed to demonstrate the effect of the governing non-dimensional parameters on the flow distribution.  相似文献   

14.
We consider a model problem on the generation of a radio signal by a nonstationary gamma-ray source. The problem is essentially two-dimensional in space but is reduced to a number of one-dimensional nonstationary problems. The results of a numerical solution of the problem are discussed.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 18–26, May–June, 1975.In conclusion, the authors wish to thank A. A. Milyutin and I. E. Dinaburg for working out the numerical methods used for the solution of this problem, and also thank I. N. Mikhailov and G. M. Gandel'man for their participation in the development of the problem.  相似文献   

15.
Several theoretical and experimental studies have been devoted to the problem of the nonstationary action of the stream behind a shock wave on bodies of varied shape. In particular, in [1], the pressure and density are calculated for flow about bodies of the more typical shapes in the initial stage of the process. The basic relations which accompany the interaction of shock waves are considered in [2, 3]. The analysis of the phenomena of diffraction of shock waves on the sphere, cylinder, and cone is presented in [4]. Problems of unsteady flow about a wing are examined in [5, 6]. A detailed review of the foreign studies on unsteady flow is given in [7]. Of great practical interest is the question of the time for flow formation and the magnitudes of the unsteady loads during this period. Experimental investigations have been made recently [8, 9] in which some criteria are presented for estimating the bow shock formation time for supersonic flow about the sphere and cylinder with flat blunting. However the question of the formation time of the stationary pressure on the body surface is not referred to in these studies and no relationship is shown between the transient position of the reflected wave and the corresponding unsteady pressure on the surface. Moreover, in [8] the dimensionless time criterion is determined very approximately, independently of the Mach number of the shock wave. The present study was undertaken with the object of determining the basic criteria which characterize unsteady flow about bodies behind a plane shock wave which has time-independent parameters, and clarification of the shock wave reflected from the body and the pressure on the surface of the body during the transient period. The most typical body shapes were studied: 1) a cylinder with flat face aligned with the stream; 2) a spherically-blunted cylinder; and 3) a cylinder transverse to the stream. The experiments were conducted in a conventional shock tube using the single-diaphragm scheme. The measurements of the pressure on the models and the velocity of the incident shock wave were made using the technique analogous to that of [10, 11]. A highspeed movie camera was used to record the pattern of the wave diffraction on the body. The Mach number of the incident shock wave varied in the range from M=1.5 to M≈6.0, which corresponded to a range of Mach numbers M of the stream behind the shock wave from 0.6 to 2.1. The calculations of the required gas dynamic parameters for high temperatures were made with account for equilibrium dissociation of the air on the basis of the data of [10, 12, 13]. The magnitude of the relative maximal shock wave standoff Δ at the stagnation point obtained in the present experiments was compared with the values of Δ from other studies. In the case of the flat-blunted cylinder it was in good agreement with the results of [8–14], and in the case of the spherically-blunted cylinder and the transverse cylinder it was in agreement with the results of [15].  相似文献   

16.
17.
The systematic development of the theory of shock reflection from a solid wall started in [1]. Regular reflection and a three-shock configuration originating in Mach reflection were considered there under the assumption of homogeneity of the domains between the discontinuities and, therefore, of rectilinearity of these latter. The difficulties of the theoretical study include the essential nonlinearity of the process as well as the instability of the tangential discontinuity originating during Mach reflection. Analytic solutions of the problem in a linear formulation are known for a small wedge angle or a weak wave (see [2–4], for example). The solution in a nonlinear formulation has been carried out numerically in [5, 6] for arbitrary wedge angles and wave intensities. Since the wave was nonstationary, the internal flow configuration is difficult to clarify by means of the constant pressure and density curves presented. A formulation of the problem for the complete system of gasdynamics equations in self-similar variables is given in [7] and a method of solution is proposed but no results are presented. Difficulties with the instability of the contact discontinuity are noted. The problem formulation in this paper is analogous to that proposed in [7]. However, a method of straight-through computation without extraction of the compression shocks in the flow field is selected to compute the discontinuous flows. The shocks and contact discontinuities in such a case are domains with abrupt changes in the gasdynamics parameters. The computations were carried out for a broad range of interaction angles and shock intensities. The results obtained are in good agreement with the analytical solutions and experimental results. Information about the additional rise in reflection pressure after the Mach foot has been obtained during the solution.  相似文献   

18.
An approximate method of determining the heat transfer and friction stress in three-dimensional flow problems using the two-dimensional and one-dimensional solutions is proposed. This method is applicable over a wide range of Reynolds numbers — from low to high. On the basis of a theoretical analysis of the approximate analytic solution of the equations of a three-dimensional viscous shock layer it is shown that the problem of determining the heat flux in the neighborhood of the plane of symmetry of bodies inclined to the flow at an angle of attack can be reduced, firstly, to the problem of determining that quantity for an axisymmetric body and, secondly, to the problem of determining the heat transfer to an axisymmetric stagnation point. On the basis of an analysis of the results of a numerical solution of the problem it is shown that corresponding analogs can also be used for the friction stress. The accuracy of the similarity relations established is estimated by solving the problem by a finite-difference method. A similarity relation of the same kind was previously obtained in [1] for a double-curvature stagnation point.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 117–122, January–February, 1990.  相似文献   

19.
Most authors use the stream function for the calculation of two-dimensional viscous incompressible fluid flows. The velocity field is determined by numerical differentiation, which reduces the computation accuracy significantly. In the following we study steady viscous fluid flow fay a method which makes it possible to avoid this drawback; in this case the problem of the Navier-Stokes equations reduces to a different equivalent problem: an implicit finite-difference scheme constructed on the basis of the results of [1, 2] is proposed for the numerical solution of the resulting system of equations.  相似文献   

20.
Computational simulations of an expansion tube were conducted to estimate flow parameters and verify experimental uncertainties. Two types of simulations of the complete facility were undertaken: a one-dimensional simulation, and a hybrid simulation where a one-dimensional simulation of the shock tube section was coupled with a two-dimensional simulation of the acceleration tube. Good agreement between the one-dimensional simulations and experiments were obtained in the shock tube portion of the facility. In the acceleration section, initial two-dimensional simulations did not match the experimentally measured pitot pressure and showed a discrepancy in the shock speed. Further studies examined how the accelerator gas composition affected shock speed, static pressure and pitot pressure levels in expansion tube operation. Subsequent two-dimensional simulations, using an 8% level of air contamination in helium, showed reasonable agreement with experimental data. This prediction of air contamination was later confirmed with experimental measurements of the air partial pressure before operation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号