首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
高速三维边界层的横流不稳定性   总被引:3,自引:2,他引:3  
赵耕夫  徐立 《力学学报》1998,30(5):521-530
用两点四阶差分格式研究旋转圆锥超音速三维边界层的横流不稳定性和壁面冷却对稳定性的影响数值结果表明,与二维边界层相比横流使三维边界层第一模式增长率增大,对第二模式影响很小;Me<43第一模式最不稳定,Me>43第二模式最不稳定;三维边界层最不稳定第二模式是三维波,二维边界层则为二维波;壁面冷却对第一模式起稳定作用,对第二模式起不稳定作用  相似文献   

2.
超音速/高超音速三维边界层的层流控制基金项目   总被引:2,自引:0,他引:2  
赵耕夫 《力学学报》2001,33(4):519-524
根据可压缩黏性稳定性理论研究了壁面冷却和抽吸对超音速、高超音速三维边界层的层流控制作用.数值结果证明壁面冷却对第一模式起稳定作用,对第二模式有不稳定作用;壁面抽吸对第一、二模式都起稳定作用;直到Me=7,导致绝热壁边界层转捩的始终是第一模式,Me≥6的冷却壁边界层则是第二模式对转捩起主导作用.壁面冷却能够推迟边界层转捩,但是和二维边界层相比壁面冷却对高速三维边界层的层流控制作用是很有限的.  相似文献   

3.
赵耕夫 《力学学报》2001,33(4):519-524
根据可压缩黏性稳定性理论研究了壁面冷却和抽吸对超音速、高超音速三维边界层的层流控制作用。数值结果证明:壁面冷却对第一模式起稳定作用,对第二模式有不稳定作用;壁面抽吸对第一、二模式都起稳定作用;直到Me=7,导致绝热壁边界层转捩的始终是第一模式,Me≥6的冷却壁边界层则是第二模式对转捩起主导作用。壁面冷却能够推迟边界层转捩,但是和二维边界层相比壁面冷却对高速三维边界层的层流控制作用是很有限的。  相似文献   

4.
本文回顾了可压缩边界层与混合层中失稳结构及其应用的研究进展. 这些工作包括人们对高超声速平板边界层失稳特性、高超声速圆锥边界层转捩攻角效应的产生机制和可压缩混合层失稳特性的研究认识,以及这些相关认识的3 个应用方向. 这些相关工作丰富了人们对高速流动转捩和湍流拟序结构的认识.  相似文献   

5.
基于深度神经网络DNN构建了从层流流场无量纲速度梯度、流向涡强度等物理量到横流转捩模态下间歇因子间的映射关系,获得一种新的数据驱动转捩模型.通过将数据驱动转捩模型与SST k-ω湍流模型耦合,有效简化了转捩模型输运方程求解,实现高效、准确的亚音速三维边界层横流转捩流场计算. DNN训练数据来自变雷诺数的NLF(2)-0415无限展长后掠翼计算结果,并以两种工况进行测试,数据驱动转捩模型预测精度与γ-Reθ转捩模型近似.将数据驱动转捩模型用于其他典型横流转捩算例的计算,以验证其泛化能力.对于变后掠角的NLF(2)-0415后掠翼,数据驱动转捩模型与γ-Reθt-CF模型预测的转捩位置几乎一致,并且能够预测出后掠角从45°增长到65°的过程中,转捩位置先向前再向后移动的现象;对于标准椭球体,使用低分辨率网格进行计算,数据驱动转捩模型依然能够实现转捩位置预测,对椭球体表面Cf的计算结果与多个平台的横流转捩模型、实验结果基本一致.研究表明,以横流转捩相关物理量作为输入对DNN进行训练,并将获得的数据驱动转捩模型与SST k-ω湍流模型耦合,可以实现对横流转捩的有效预测,且具有较强的泛化能力.数...  相似文献   

6.
高超声速粗糙元诱导转捩的数值模拟及机理分析   总被引:1,自引:0,他引:1  
朱德华  袁湘江  沈清  陈林 《力学学报》2015,47(3):381-388
采用直接数值模拟方法细致刻画了钻石型粗糙元诱导的高超声速边界层从层流到湍流的转捩过程,从拓扑结构稳定性和边界层流动稳定性两个角度分析了钻石型粗糙元诱导转捩的机理. 流动结构的拓扑分析表明,钻石型粗糙元头部区域和底部区域分别存在不稳定的鞍点-鞍点(SS) 型轨线和鞍点-结点-鞍点(SNS) 型轨线,在扰动的作用下其会形成非定常、非对称的振荡结构. 边界层流动失稳过程计算分析表明,钻石型粗糙元会产生高波数扰动,并发现在扰动发展过程中大尺度结构会破碎. 两种不同类型的流动失稳效应同时存在. 此外,通过不同类型粗糙元(圆柱、斜坡及钻石型) 的对比,揭示了不同类型粗糙元诱导转捩机理的差异,为高超声速人工转捩装置设计提供了基础理论支撑.   相似文献   

7.
王斌  白存儒  杨广郡  杨永 《实验力学》2009,24(3):197-201
报导了在西北工业大学低湍流度风洞中采用升华法测量后掠翼上表面流动转捩位置及其随攻角变化而改变情况,并参照后掠翼压力分布的实验结果进行分析.本文涉及的升华法,是根据边界层的层流区和湍流区流态差别来判断边界层转捩的一种测量方法.升华法的测量结果表明:在小攻角范围内,转捩位置逐渐提前,当达到某一攻角时,转捩快速接近前缘.这一结果和压力分布的实验结果相吻合,说明升华法能够较准确地显示转捩线位置.由于影响后掠翼转捩位置的因素较多,诸如边界层内横流的不稳定性、壁面的干扰、后掠翼的三维流动效应等,致使出现了攻角为4°时转捩位置呈现出一条斜线的现象.  相似文献   

8.
回顾了过去10年在壁湍流和自 由剪切流转捩问题的数值研究中取得的重要进展, 介绍了数值方法和模式研究方面 的进展, 以及由此带来的关于转捩理论认识上的进展. 对于壁面流动, 文中主要介 绍了渐进稳定流动中``跨越(bypass)转捩'研究中的各种观点. 本文也简要介绍了 对感受性和转捩控制方面的研究.  相似文献   

9.
朱德华  沈清  杨武兵 《力学学报》2021,53(3):752-760
返回舱高雷诺数再入过程中存在肩部高热流、底部阻力无法准确预测以及非定常振动等问题,解决此类问题的关键是分离和转捩等物理现象的准确识别. 本文采用大涡模拟方法细致刻画了返回舱类钝体外形在高雷诺数再入过程中的分离和转捩等物理现象,获得了返回舱底部流动形态以及稳定性特征. 从肩部剪切失稳、底部流动结构失稳、尾迹发展区以及远尾迹区的耦合失稳等多个角度分析了返回舱外形的底部流动失稳机制.研究发现, 返回舱类外形底部流动稳定性主要存在两类失稳模式即肩部剪切失稳模式以及底部流动结构失稳模式,二种模式存在耦合效应, 同时在远尾迹湍流区域存在类卡门涡街的振荡行为.这些认识为理解返回舱外部扰动因素对底部流动的作用机理及返回舱稳定性控制提供了基础理论支撑.   相似文献   

10.
超声速边界层/混合层组合流动的稳定性分析   总被引:1,自引:0,他引:1  
利用可压缩线性稳定性理论研究了超声速混合层考虑壁面影响流动时的失稳特性. 基本流场选取了具有不同速度特征的2 股均匀来流,进入存在上下壁面的流道中. 混合层与边界层的距离为1~3 个边界层厚度,其中壁面取为绝热壁. 分析了该流动在超声速情况下的稳定性特征,同时还讨论了不同波角下的三维扰动波的演化特点,并与二维扰动波进行了比较和分析. 研究结果表明,在此流动情况下,边界层流动和混合层流动的稳定性特征同时存在,并互有影响,其流动稳定性特征既有别于单纯的平板边界层,也有别于单纯的平面混合层,呈现出了新的稳定性特征.   相似文献   

11.
Crossflow instability plays very important role in the transition of the boundary layer on a swept wing, typical in the engineering applications. Experiments revealed that the linear stability theory well predicted the form of the crossflow vortices, but usually much overpredicted their growth rate. Using nonlinear theory of hydrodynamic stability, combined with some other considerations, we were able to obtain the growth rate in good agreement with experimental observations. The project supported by the National Natural Science Foundation of China, Grant No. 19572048  相似文献   

12.
The hypersonic laminar kinetic energy transition model is developed to be appropriate for crossflow induced boundary layer transition prediction. A crossflow timescale is constructed and incorporated in the kT-kL transition model to reflect crossflow effect during three-dimensional boundary layer transition. The stream-wise vorticity is selected as the indicator of crossflow strength. Regarding the inviscid unstable characteristic of crossflow instability, the crossflow timescale is constructed by reference to the second mode timescale. To eliminate inappropriate development of the crossflow timescale where the effective length scale is large enough while the crossflow strength remains at a quite low level, a crossflow velocity limit function is proposed. The revised kT-kL transition model has been applied to HIFiRE-5 and blunt cone with 1°angle of attack test cases. Results show good correspondence with the experimental data and DNS data, which demonstrates that the constructed crossflow timescale makes the revised transition model capable of reproducing crossflow induced transition behavior with a reasonable degree of accuracy.  相似文献   

13.
Boundary layers that develop over a body in fluid flow are in most cases three-dimensional owing to the spin, yaw, or surface curvature of the body. Therefore, the study of three-dimensional (3D) boundary-layer transition is essential to work in practical aerodynamics. The present investigation is concerned with the problem of 3D boundary layers over a yawed body. A yawed cylinder model that represents the leading edge portion of a swept wing and the mechanism of crossflow instability are investigated in detail using hot-wire velocimetry and a flow visualization technique. As a result, traveling disturbances having frequencies f1 and f2, which differ by about one order of magnitude, are detected in the transition region. The phase velocities and directions of travel of those disturbances are measured. Results for the low-frequency disturbance f1 show qualitative coincidence with results numerically predicted for a crossflow unsteady disturbance. Nameley, F1 travels nearly spanwise to the yawed cylinder and very close to the cylinder wall. The results for the high-frequency disturbance f2 good agreement with the existing experimental results. The 2 disturbance is found to be the high-frequency inflectional secondary instability that appears in 3D boundary layer transition in general. A two-stage transition process, where stationary crossflow vortices appear as the primary instability and a traveling inflectional disturbance is generated as a secondary instability, was observed. Secondary instability seems to play a major role in turbulent transition.  相似文献   

14.
Optimum Suction Distribution for Transition Control   总被引:1,自引:0,他引:1  
The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method of finding the best suction distribution subject to some overall constraints applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting nonlinear system of equations is solved using the Newton–Raphson technique. The computations are performed for a Blasius boundary layer on flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero. Received 8 May 1997 and accepted 5 November 1998  相似文献   

15.
Two-dimensional eigenvalue analysis is used on a massive scale to study the spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other types of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to Numerical results are presented for the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. In particular, the control mode itself, if initiated with too large an amplitude, may lead to an earlier transition.  相似文献   

16.
Two versions of the structure of a multi-discharge plasma actuator intended to excite boundary layer perturbations in the neighborhood of the leading swept-wing edge are suggested. The actuator must prevent from appearance and development of the crossflow instability modes leading to laminarturbulent transition under the normal conditions. In the case of flow past a swept wing, excitation of controllable perturbations by the plasma actuator is simulated numerically in the steady-state approximation under the typical conditions of cruising flight of a subsonic aircraft. The local body force and thermal impact on the boundary layer flow which is periodic along the leading wing edge is considered. The calculations are carried out for the physical impact parameters realizable in the near-surface dielectric barrier discharge.  相似文献   

17.
Experimental data on stability of a three-dimensional supersonic boundary layer on a swept wing are presented. The experiments are performed on a swept wing model with a lenticular profile with a 40° sweep angle of the leading edge at a zero angle of attack. The supersonic boundary layer on the swept wing was laminarized with the use of distributed roughness. A pioneering study of interaction of traveling and stationary disturbances is performed. Some specific features of this interaction are identified. The main reason for turbulence emergence in a supersonic boundary layer on a swept wing is demonstrated to be secondary crossflow instability. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 2, pp. 40–46, March–April, 2008.  相似文献   

18.
On the Secondary Instability of Three-Dimensional Boundary Layers   总被引:1,自引:0,他引:1  
One of the possible transition scenarios in three-dimensional boundary layers, the saturation of stationary crossflow vortices and their secondary instability to high-frequency disturbances, is studied using the Parabolized Stability Equations (PSE) and Floquet theory. Starting from nonlinear PSE solutions, we investigate the region where a purely stationary crossflow disturbance saturates for its secondary instability characteristics utilizing global and local eigenvalue solvers that are based on the Implicitly Restarted Arnoldi Method and a Newton–Raphson technique, respectively. Results are presented for swept Hiemenz flow and the DLR swept flat plate experiment. The main focuses of this study are on the existence of multiple roots in the eigenvalue spectrum that could explain experimental observations of time-dependent occurrences of an explosive growth of traveling disturbances, on the origin of high-frequency disturbances, as well as on gaining more information about threshold amplitudes of primary disturbances necessary for the growth of secondary disturbances. Received 13 July 1998 and accepted 7 July 2000  相似文献   

19.
The focus of this paper is to study the ability of unsteady RANS‐based CFD to predict separation over a blunt body for a wide range of Reynolds numbers particularly the ability to capture laminar‐to‐turbulent transition. A perfect test case to demonstrate this point is the cylinder‐in‐crossflow for which a comparison between experimental results from the open literature and a series of unsteady simulations is made. Reynolds number based on cylinder diameter is varied from 104 to 107 (subcritical through supercritical flow). Two methods are used to account for the turbulence in the simulations: currently available eddy–viscosity models, including standard and realizable forms of the k–ε model; and a newly developed eddy–viscosity model capable of resolving boundary layer transition, which is absolutely necessary for the type and range of flow under consideration. The new model does not require user input or ‘empirical’ fixes to force transition. For the first time in the open literature, three distinct flow regimes and the drag crisis due to the downstream shift of the separation point are predicted using an eddy–viscosity based model with transition effects. Discrepancies between experimental and computational results are discussed, and difficulties for CFD prediction are highlighted. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The nth-order expansion of the parabolized stability equation(EPSEn) is obtained from the Taylor expansion of the linear parabolized stability equation(LPSE) in the streamwise direction. The EPSE together with the homogeneous boundary conditions forms a local eigenvalue problem, in which the streamwise variations of the mean flow and the disturbance shape function are considered. The first-order EPSE(EPSE1) and the second-order EPSE(EPSE2) are used to study the crossflow instability in the swept NLF(2)-0415 wing boundary layer. The non-parallelism degree of the boundary layer is strong. Compared with the growth rates predicted by the linear stability theory(LST),the results given by the EPSE1 and EPSE2 agree well with those given by the LPSE.In particular, the results given by the EPSE2 are almost the same as those given by the LPSE. The prediction of the EPSE1 is more accurate than the prediction of the LST, and is more efficient than the predictions of the EPSE2 and LPSE. Therefore, the EPSE1 is an efficient e~N prediction tool for the crossflow instability in swept-wing boundary-layer flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号