首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
The two-fluid model is widely adopted in simulations of dense gas–particle flows in engineering facilities. Present two-phase turbulence models for two-fluid modeling are isotropic. However, turbulence in actual gas–particle flows is not isotropic. Moreover, in these models the two-phase velocity correlation is closed using dimensional analysis, leading to discrepancies between the numerical results, theoretical analysis and experiments. To rectify this problem, some two-phase turbulence models were proposed by the authors and are applied to simulate dense gas–particle flows in downers, risers, and horizontal channels; Experimental results validate the simulation results. Among these models the USM-Θ and the two-scale USM models are shown to give a better account of both anisotropic particle turbulence and particle–particle collision using the transport equation model for the two-phase velocity correlation.  相似文献   

2.
An efficient immersed boundary-lattice Boltzmann method (IB-LBM) is proposed for fully resolved simulations of suspended solid particles in viscoelastic flows. Stress LBM based on Giesekus and Oldroyd-B constitutive equation are used to model the viscoelastic stress tensor. A boundary thickening-based direct forcing IB method is adopted to solve the particle–fluid interactions with high accuracy for non-slip boundary conditions. A universal law is proposed to determine the diffusivity constant in a viscoelastic LBM model to balance the numerical accuracy and stability over a wide range of computational parameters. An asynchronous calculation strategy is adopted to further improve the computing efficiency. The method was firstly applicated to the simulation of sedimentation of a single particle and a pair of particles after good validations in cases of the flow past a fixed cylinder and particle migration in a Couette flow against FEM and FVM methods. The determination of the asynchronous calculation strategy and the effect of viscoelastic stress distribution on the settling behaviors of one and two particles are revealed. Subsequently, 504 particles settling in a closed cavity was simulated and the phenomenon that the viscoelastic stress stabilizing the Rayleigh–Taylor instabilities was observed. At last, simulations of a dense flow involving 11001 particles, the largest number of particles to date, were performed to investigate the instability behavior induced by elastic effect under hydrodynamic interactions in a viscoelastic fluid. The elasticity-induced ordering of the particle structures and fluid bubble structures in this dense flow is revealed for the first time. These simulations demonstrate the capability and prospects of the present method for aid in understanding the complex behaviors of viscoelastic particle suspensions.  相似文献   

3.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In the present study, we have proposed an immersed‐boundary finite‐volume method for the direct numerical simulation of flows with inertialess paramagnetic particles suspended in a nonmagnetic fluid under an external magnetic field without the need for any model such as the dipole–dipole interaction. In the proposed method, the magnetic field (or force) is described by the numerical solution of the Maxwell equation without current, where the smoothed representation technique is employed to tackle the discontinuity of magnetic permeability across the particle–fluid interface. The flow field, on the other hand, is described by the solution of the continuity and momentum equations, where the discrete‐forcing‐based immersed‐boundary method is employed to satisfy the no‐slip condition at the interface. To validate the method, we performed numerical simulations on the two‐dimensional motion of two and three paramagnetic particles in a nonmagnetic fluid subjected to an external uniform magnetic field and then compared the results with the existing finite‐element and semi‐analytical solutions. Comparison shows that the proposed method is robust in the direct simulation of such magnetic particulate flows. This method can be extended to more general flows without difficulty: three‐dimensional particulate flows, flows with a great number of particles, or flows under an arbitrary external magnetic field. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A computational particle fluid dynamics (CPFD) numerical method to model gas–solid flows in a circulating fluidized bed (CFB) riser was used to assess the effects of particle size distribution (PSD) on solids distribution and flow. We investigated a binary PSD and a polydisperse PSD case. Our simulations were compared with measured solids concentrations and velocity profiles from experiments, as well as with a published Eulerian-Eulerian simulation. Overall flow patterns were similar for both simulation cases, as confirmed by experimental measurements. However, our fine-mesh CPFD simulations failed to predict a dense bottom region in the riser, as seen in other numerical studies. Above this bottom region, distributions of particle volume fraction and particle vertical velocity were consistent with our experiments, and the simulated average particle diameter decreased as a power function with riser height. Interactions between particles and walls also were successfully modeled, with accurate predictions for the lateral profiles of particle vertical velocity. It was easy to implement PSD into the CPFD numerical model, and it required fewer computational resources compared with other models, especially when particles with a polydisperse PSD were present in the heterogeneous flow.  相似文献   

6.
A coupled Lagrangian interface‐tracking and Eulerian level set (LS) method is developed and implemented for numerical simulations of two‐fluid flows. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties, such as density and viscosity, are obtained from the LS function. The LS function maintains a signed distance function without an auxiliary equation via the particle‐based Lagrangian re‐initialization technique. To assess the new hybrid method, numerical simulations of several ‘standard interface‐moving’ problems and two‐fluid laminar and turbulent flows are conducted. The numerical results are evaluated by monitoring the mass conservation, the turbulence energy spectral density function and the consistency between Eulerian and Lagrangian components. The results of our analysis indicate that the hybrid particle‐level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant (unphysical) mass loss or gain, even in a turbulent flow. The results obtained for isotropic turbulence by the new particle‐level set method are validated by comparison with those obtained by the ‘zero Mach number’, variable‐density method. For the cases with small thermal/mass diffusivity, both methods are found to generate similar results. Analysis of the vorticity and energy equations indicates that the destabilization effect of turbulence and the stability effect of surface tension on the interface motion are strongly dependent on the density and viscosity ratios of the fluids. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
We present a finite element residual‐based variational multiscale formulation applied to the numerical simulation of particle‐laden flows. We employ a Eulerian–Eulerian framework to describe the flows in which the mathematical model results from the incompressible Navier–Stokes equation combined with an advection–diffusion transport equation. Special boundary conditions at the bottom are introduced to take into account sediments deposition. Computational experiments are organized in two examples. The first example deals with the well‐known gravity current benchmark, the lock‐exchange configuration. The second also employs for the current initiation the lock configuration, but the sediment particles are endowed with a deposition velocity and are allowed to leave the domain in the moment they reach the bottom. This is intended to mimic, partially, as the bed morphology is not allowed to change, the deposition process, in which sediment deposits are no longer carried by the flow. The spatial pattern of the deposition and its correlation with flow structures are the main focus of this analysis. Numerical experiments have shown that the present formulation captures most of the relevant turbulent flow features with reasonable accuracy, when compared with highly resolved numerical simulations and experimental data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A novel dynamic mixing length (DML) subgrid‐scale model for large eddy simulations is proposed in this work to improve the cutoff length of the Smagorinsky model. The characteristic mixing length (or the characteristic wave number) is dynamically estimated for the subgrid‐scale fluctuation of turbulence by the cutoff wave‐number, kc, and the dissipation wave‐number, kd. The dissipation wave number is derived from the kinetic energy spectrum equation and the dissipation spectrum equation. To prove the promise of the DML model, this model is used to simulate the lid‐driven cubical cavity with max‐velocity‐based Reynolds numbers 8850 and 12,000, the channel flows with friction‐velocity‐based Reynolds numbers 180, 395, 590, and 950, and the turbulent flow past a square cylinder at the higher Reynolds number 21,400, respectively, compared with the Smagorinsky model and Germano et al.'s dynamic Smagorinsky model. Different numerical experiments with different Reynolds numbers show that the DML model can be used in simulations of flows with a wide range of Reynolds numbers without the occurrence of singular values. The DML model can alleviate the dissipation of the Smagorinsky model without the loss of its robustness. The DML model shows some advantages over Germano et al.'s dynamic Smagorinsky model in its high stability and simplicity of calculation because the coefficient of the DML model always stays positive. The characteristic mixing length in the DML model reflects the subgrid‐scale fluctuation of turbulence in nature and thus the characteristic mixing length has a spatial and temporal distribution in turbulent flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this work is to investigate the non‐equilibrium effects of phase change in cavitating flows. For this purpose, the concept of phase change thermodynamic probability is used along with homogeneous model to simulate two‐phase cavitating flows. For simulation of unsteady behaviors of cavitation, which have practical applications, unsteady PISO algorithm based on the non‐conservative approach is utilized. For multi‐phase simulation, single‐fluid Navier–Stokes equations, along with the volume fraction transport equation, are employed. In this paper, phase change thermodynamics probabilities and cavitation model is briefly summarized. Thus, derivation of the cavitation model, starting from the basic thermodynamic equations to the mass and momentum conservation equations at a liquid–vapor two‐phase flow, is presented to explain the numerical model. Unsteady simulations of cavitation around a flat plate normal to flow direction are presented to clarify the accuracy of the model. The accuracy of the numerical results is good, and it is possible to apply this method to more complex geometries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Negatively buoyant jets consist in a dense fluid injected vertically upward into a lighter ambient fluid. The numerical simulation of this kind of buoyancy‐driven flows is challenging as it involves multiple fluids with different physical properties. In the case of immiscible fluids, it requires, in addition, to track the motion of the interface between fluids and accurately represent the discontinuities of the flow variables. In this paper, we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method and compare the two‐dimensional numerical results with experiments on the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter have been varied to cover a wide range of Froude Fr and Reynolds Re numbers ( 0.1 < Fr < 30, 8 < Re < 1350), reproducing both weak and strong laminar fountains. The flow behaviors observed for the different numerical simulations fit in the regime map based on the Re and Fr values of the experiments, and the maximum fountain height is in good agreement with the experimental observations, suggesting that particle finite element method is a useful tool for the study of immiscible two‐fluid systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We present a solver for a three‐dimensional Poisson equation issued from the Navier–Stokes equations applied to model rivers, estuaries, and coastal flows. The three‐dimensional physical domain is composed of an arbitrary domain in the horizontal direction and is bounded by an irregular free surface and bottom in the vertical direction. The equations are transformed vertically to the σ‐coordinate system to obtain an accurate representation of top and bottom topographies. The method is based on a second‐order finite volume technique on prisms consisting of triangular grids in the horizontal direction. The algorithm is accompanied by an analysis of different linear system solvers in order to achieve fast solutions. Numerical experiments are conducted to test the numerical accuracy and the computational efficiency of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper first applies a flux vector‐type splitting method based on the numerical speed of sound for computing incompressible single and multifluid flows. Here, a preconditioning matrix based on Chorin's artificial compressibility concept is used to modify the incompressible multifluid Navier–Stokes equations to be hyperbolic and density or volume fraction‐independent. The current approach can reduce eigenvalues disparity induced from density or volume fraction ratios and enhance numerical stability. Also, a simple convection‐pressure flux‐splitting method with high‐order essentially nonoscillatory‐type primitive variable extrapolations coupled with monotone upstream‐centered schemes for conservation laws‐type volume fraction recompressed reconstruction is used to maintain the preservation of sharp interface evolutions in multifluid flow simulations. Benchmark tests including a solid rotation test of a notched two‐dimensional cylinder, the evolution of spiral and rotational shapes of deformable circles, a dam breaking problem, and the Rayleigh–Taylor instability were chosen to validate the current incompressible multifluid methodology. An incompressible driven cavity was also chosen to check the robustness of the proposed method on the computation of single fluid incompressible flow problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
14.
A two-fluid model of gas–solid particle flows that is valid for a wide range of the solid-phase volume concentration (dilute to dense) is presented. The governing equations of the fluid phase are obtained by volume averaging the Navier–Stokes equations for an incompressible fluid. The solid-phase macroscopic equations are derived using an approach that is based on the kinetic theory of dense gases. This approach accounts for particle–particle collisions. The model is implemented in a control-volume finite element method for simulations of the flows of interest in two-dimensional, planar or axisymmetric, domains. The chosen mathematical model and the proposed numerical method are applied to three test problems and one demonstration problem. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
The two-fluid model is widely adopted in simulations of dense gas-particle flows in engineering facili- ties. Present two-phase turbulence models for two-fluid modeling are isotropic. However, turbulence in actual gas-particle flows is not isotropic. Moreover, in these models the two-phase velocity correlation is closed using dimensional analysis, leading to discrepancies between the numerical results, theoretical analysis and experiments. To rectify this problem, some two-phase turbulence models were proposed by the authors and are applied to simulate dense gas-particle flows in downers, risers, and horizontal channels; Experimental results validate the simulation results. Among these models the USM-O and the two-scale USM models are shown to give a better account of both anisotropic particle turbulence and particle-particle collision using the transport equation model for the two-phase velocity correlation.  相似文献   

16.
Dynamic fluid–solid interactions are widely found in chemical engineering, such as in particle-laden flows, which usually contain complex moving boundaries. The immersed boundary method (IBM) is a convenient approach to handle fluid–solid interactions with complex geometries. In this work, Uhlmann's direct-forcing IBM is improved and implemented on a supercomputer with CPU–GPU hybrid architecture. The direct-forcing IBM is modified as follows: the Poisson's equation for pressure is solved before evaluation of the body force, and the force is only distributed to the Cartesian grids inside the immersed boundary. A multidirect forcing scheme is used to evaluate the body force. These modifications result in a divergence-free flow field in the fluid domain and the no-slip boundary condition at the immersed boundary simultaneously. This method is implemented in an explicit finite-difference fractional-step scheme, and validated by 2D simulations of lid-driven cavity flow, Couette flow between two concentric cylinders and flow over a circular cylinder. Finally, the method is used to simulate the sedimentation of two circular particles in a channel. The results agree very well with previous experimental and numerical data, and are more accurate than the conventional direct-forcing method, especially in the vicinity of a moving boundary.  相似文献   

17.
The unstructured quadrilateral mesh‐based solution adaptive method is proposed in this article for simulation of compressible multi‐fluid flows with a general form of equation of state (EOS). The five equation model (J. Comput. Phys. 2002; 118 :577–616) is employed to describe the compressible multi‐fluid flows. To preserve the oscillation‐free property of velocity and pressure across the interface, the non‐conservative transport equation is discretized in a compatible way of the HLLC scheme for the conservative Euler equations on the unstructured quadrilateral cell‐based adaptive mesh. Five numerical examples, including an interface translation problem, a shock tube problem with two fluids, a solid impact problem, a two‐dimensional Riemann problem and a bubble explosion under free surface, are used to examine its performance in solving the various compressible multi‐fluid flow problems with either the same types of EOS or different types of EOS. The results are compared with those calculated by the following methods: the method with ROE scheme (J. Comput. Phys. 2002; 118 :577–616), the seven equation model (J. Comput. Phys. 1999; 150 :425–467), Shyue's fluid‐mixture model (J. Comput. Phys. 2001; 171 :678–707) or the method in Liu et al. (Comp. Fluids 2001; 30 :315–337). The comparisons for the test problems show that the proposed method seems to be more accurate than the method in Allaire et al. (J. Comput. Phys. 2002; 118 :577–616) or the seven‐equation model (J. Comput. Phys. 1999; 150 :425–467). They also show that it can adaptively and accurately solve these compressible multi‐fluid problems and preserve the oscillation‐free property of pressure and velocity across the material interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
When particles are dispersed in viscoelastic rather than Newtonian media, the hydrodynamics will be changed entailing differences in suspension rheology. The disturbance velocity profiles and stress distributions around the particle will depend on the viscoelastic material functions. Even in inertialess flows, changes in particle rotation and migration will occur. The problem of the rotation of a single spherical particle in simple shear flow in viscoelastic fluids was recently studied to understand the effects of changes in the rheological properties with both numerical simulations [D’Avino et al., J. Rheol. 52 (2008) 1331–1346] and experiments [Snijkers et al., J. Rheol. 53 (2009) 459–480]. In the simulations, different constitutive models were used to demonstrate the effects of different rheological behavior. In the experiments, fluids with different constitutive properties were chosen. In both studies a slowing down of the rotation speed of the particles was found, when compared to the Newtonian case, as elasticity increases. Surprisingly, the extent of the slowing down of the rotation rate did not depend strongly on the details of the fluid rheology, but primarily on the Weissenberg number defined as the ratio between the first normal stress difference and the shear stress.In the present work, a quantitative comparison between the experimental measurements and novel simulation results is made by considering more realistic constitutive equations as compared to the model fluids used in previous numerical simulations [D’Avino et al., J. Rheol. 52 (2008) 1331–1346]. A multimode Giesekus model with Newtonian solvent as constitutive equation is fitted to the experimentally obtained linear and nonlinear fluid properties and used to simulate the rotation of a torque-free sphere in a range of Weissenberg numbers similar to those in the experiments. A good agreement between the experimental and numerical results is obtained. The local torque and pressure distributions on the particle surface calculated by simulations are shown.  相似文献   

19.
In the present work a finite‐difference technique is developed for the implementation of a new method proposed by Aristov and Pukhnachev (Doklady Phys. 2004; 49 (2):112–115) for modeling of the axisymmetric viscous incompressible fluid flows. A new function is introduced that is related to the pressure and a system similar to the vorticity/stream function formulation is derived for the cross‐flow. This system is coupled to an equation for the azimuthal velocity component. The scheme and the algorithm treat the equations for the cross‐flow as an inextricably coupled system, which allows one to satisfy two conditions for the stream function with no condition on the auxiliary function. The issue of singularity of the matrix is tackled by adding a small parameter in the boundary conditions. The scheme is thoroughly validated on grids with different resolutions. The new numerical tool is applied to the Taylor flow between concentric rotating cylinders when the upper and lower lids are allowed to rotate independently from the inner cylinder, while the outer cylinder is held at rest. The phenomenology of this flow is adequately represented by the numerical model, including the hysteresis that takes place near certain specific values of the Reynolds number. Thus, the present results can be construed to demonstrate the viability of the new model. The success can be attributed to the adequate physical nature of the auxiliary function. The proposed technique can be used in the future for in‐depth investigations of the bifurcation phenomena in rotating flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A computational particle fluid dynamics(CPFD) numerical method to model gas-solid flows in a circulating fluidized bed(CFB) riser was used to assess the effects of particle size distribution(PSD) on solids distribution and flow.We investigated a binary PSD and a polydisperse PSD case.Our simulations were compared with measured solids concentrations and velocity profiles from experiments,as well as with a published Eulerian-Eulerian simulation.Overall flow patterns were similar for both simulation cases,as confirmed by experimental measurements.However,our fine-mesh CPFD simulations failed to predict a dense bottom region in the riser,as seen in other numerical studies.Above this bottom region,distributions of particle volume fraction and particle vertical velocity were consistent with our experiments,and the simulated average particle diameter decreased as a power function with riser height.Interactions between particles and walls also were successfully modeled,with accurate predictions for the lateral profiles of particle vertical velocity.It was easy to implement PSD into the CPFD numerical model,and it required fewer computational resources compared with other models,especially when particles with a polydisperse PSD were present in the heterogeneous flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号