首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
V. I. Nosik 《Fluid Dynamics》1995,30(4):629-637
The effect of nonequilibrium non-Arrhenius dissociation kinetics, which cannot be reduced to two-temperature kinetics, on the microparameter distribution in a boundary layer and, in particular, on the heat transfer to the surface of the body is considered with reference to the flow of a binary mixture of nitrogen molecules and nitrogen atoms in the neighborhood of the stagnation point on a blunt body.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 168–178, July–August, 1995.  相似文献   

2.
The results of an experimental and numerical investigation of the heat transfer between a subsonic jet of dissociated nitrogen and a titanium surface, through which molecular oxygen is blown into the jet, are presented. It is established that in the nonequilibrium boundary layer regime the dependence of the heat flux on the injected oxygen flow rate is nonmonotonic. At a certain flow rate the heat transfer to the titanium surface reaches a maximum that considerably exceeds (by 20%) the heat transfer to an impermeable wall. The observed increase in heat transfer in the presence of injection is attributed to the interaction of the gas-phase exchange reactions and the recombination of atoms on the titanium surface, which has sharply different catalytic properties with respect to the recombination of nitrogen and oxygen atoms.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 148–155, July–August, 1991.  相似文献   

3.
The distinctive features of the formation of the catalyticity of materials with respect to atom recombination on the material surface are investigated for mixtures of different high-temperature gases under conditions of hypersonic atmospheric flight or bench setups. It is shown that in general the catalyticity constants (heterogenous recombination probabilities) of individual components determined experimentally in dissociated flows of “pure” gases are improperly used for calculating the heat fluxes to material surfaces in multicomponent gas flows, owing to differences in the occupation of the surface by atoms in pure gases and mixtures. This effect must be taken into account in interpreting the experimental data which so far have been the only source of information on material catalyticity in gas mixtures. Otherwise, the results of calculations of the heat transfer to hypersonic flight vehicles could turn out to be invalid. Examples of the possible effect of ignoring this factor on the calculated heat fluxes are presented.  相似文献   

4.
Atoms at a free surface experience a different local environment than do atoms in the bulk of a material. As a result, the energy associated with these atoms will, in general, be different from that of the atoms in the bulk. The excess energy associated with surface atoms is called surface free energy. In traditional continuum mechanics, such surface free energy is typically neglected because it is associated with only a few layers of atoms near the surface and the ratio of the volume occupied by the surface atoms and the total volume of material of interest is extremely small. However, for nano-size particles, wires and films, the surface to volume ratio becomes significant, and so does the effect of surface free energy. In this paper, a framework is developed to incorporate the surface free energy into the continuum theory of mechanics. Based on this approach, it is demonstrated that the overall elastic behavior of structural elements (such as particles, wires, films) is size-dependent. Although such size-dependency is negligible for conventional structural elements, it becomes significant when at least one of the dimensions of the element shrinks to nanometers. Numerical examples are given in the paper to illustrate quantitatively the effects of surface free energy on the elastic properties of nano-size particles, wires and films.  相似文献   

5.
Kovalev  V. L.  Suslov  O. N. 《Fluid Dynamics》1988,23(4):579-585
An asymptotic expansion of the solution, for large Schmidt numbers, of the system of equations of a chemically nonequilibrium multicomponent boundary layer on the catalytic surface of a blunt body [1] is used to obtain expressions for the diffusion fluxes of the reaction products and chemical elements and the heat flux as functions of the gradients of the reaction product concentrations, chemical element concentrations and enthalpy across the boundary layer. It is shown that when the body is exposed to a supersonic air flow, the diffusion separation of the chemical element oxygen depends importantly on the atom concentration at the outer edge of the boundary layer and the nature of the homogeneous and heterogeneous catalytic reactions. If the surface promotes the rapid recombination of oxygen atoms and is chemically neutral with respect to nitrogen atoms, then an excess of the chemical element oxygen is formed on the body. Otherwise we get an enhanced concentration of the element nitrogen. As distinct from the case of an ideally catalytic wall [2–4], on a surface possessing the property of catalytic selectivity the diffusion separation of chemical elements takes place even when only atoms are present at the outer edge of the boundary layer. On a chemically neutral surface diffusion separation may be caused by homogeneous recombination reactions between oxygen and nitrogen atoms if their rate constants are essentially different.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 115–121, July–August, 1988.  相似文献   

6.
 The effect of sweeping by the departing droplets on the heat transfer coefficient in dropwise condensation is studied analytically here. Using basic principles, an analytical model for dropwise condensation is devised, which takes into account the elementary processes that make up the dropwise condensation cycle. The analysis is divided into two parts: in the first part, the heat transfer as a result of nucleation and coalescing of the droplets is considered. In the second part, the effect of sweeping is introduced. The results are presented as the variation of nondimensional heat flux versus the distance from the upper edge of the condenser surface at various surface subcoolings. Calculations show that the variation of heat flux with surface subcooling is linear only at small values of subcooling. As the subcooling is increased the slope of the mean heat flux versus subcooling curve decreases, and for a sufficiently high body force passes through a maximum. Received on 12 August 1999 / Published online: 29 November 2001  相似文献   

7.
The balances of mass, linear momentum and energy for a continuum provide jump relations between values of the physical variables on the two sides of a singular surface, either a boundary of the medium or an interior surface. In the case of a mixture, an overlap of interacting continua, there are jump relations for each constituent. While an elementary phase change front across which one phase of a constituent is transformed completely to a different phase can be treated as a single constituent, more general situations have co-existing phases on one side of the front, each with their own density, velocity, stress and internal energy fields, which must be treated as separate constituents. The phase change is now a mass transfer between constituents which becomes a surface production term in the mass balance jump relation for each constituent. In turn this implies surface production contributions to the momentum and energy relations associated with the surface mass transfer, including interaction body force and energy transfer contributions as well as the direct transfer terms. The general jump relations with such surface production contributions are formulated, and are illustrated for a number of situations arising in polythermal ice sheets and wet snow packs.  相似文献   

8.
伴随超空泡产生的高速细长体入水实验研究   总被引:6,自引:0,他引:6  
介绍了几种不同工况下高速细长体入水过程的实验研究工作. 用高速摄影仪实时记录了细长体高速入水时与自由液面之间的瞬态相互冲击作用, 清晰地观察了细长体高速入水后诱导生成的水中空泡流的形态及其演化过程. 具体分析了几种工况下高速细长体入水瞬间自由面的波动特性和细长体入水后运动的不稳定性. 从实时记录的照片中,测量出相邻2帧图片之间的细长体的位移差之后, 计算出细长体在入水过程中以及在水中的瞬时速度. 通过分析物体速度的变化趋势, 了解了超空泡流动的复杂过程.   相似文献   

9.
We solve two variational problems on determining the optimum form of a radiating body of given dimensions in a gas flow at high supersonic velocity with a laminar flow regime in the boundary layer. We consider the case in which two heat transfer processes are significant: convective heat transfer from the gas to the body and radiation from the body surface. The first problem involves finding the contour of the body which receives the minimal thermal flux. In the solution of the second problem we seek that form of the thermally isolated body for which its surface temperature will be minimal for given parameters of the approaching stream or for which the motion velocity will be maximal for a given wall temperature and flight altitude.  相似文献   

10.
Experiments have been conducted for natural convection heat transfer from protruding discrete heat sources, mounted at different positions on a substrate, to determine the optimal configuration, and to study the effect of surface radiation on them, which reduces their temperature upto 12 %. The optimal configuration has been determined by a non-dimensional geometric distance parameter (λ). An empirical correlation has been proposed between the non-dimensional steady state temperature (θ) and λ, by taking into account the effect of surface radiation heat transfer.  相似文献   

11.
In the concurrent multiscale analysis, it is difficult to have truly seamless transition between the atomistic and continuum scale. This situation is even worse when defects pass through the boundary between different scales. For example, there is a lack of effective methods to handle the dislocation passing through scale boundaries which is important to investigate plasticity at the nanoscale. In this paper, the generalized particle (GP) method proposed by the first author is further developed so that a seamless transition and dislocation passing between different scales can be realized. Specifically, the linkage between different scales is through material neighbor-link cells (NLC) with scale duality. This indicates that material elements can be high-scale particles through a lumping process and can also be atoms via decomposition depending on the needs of the simulation. At the interface, the information transfer from bottom scale-up or from top scale-down is through the particles or atoms in the NLC. They are with the same material structure, all possess nonlocal constitutive behavior; thus, the smooth transition at the interface between different scales can be attained and validated to avoid non-physical responses. To save degrees of freedom, atoms are lumped together into a generalized particle in the domain in which the deformation gradient is near homogeneous. On the other hand, when defects such as dislocations in the atomistic domain are near the particle domain, the particles along dislocation propagation path and its surrounding region will be decomposed into atoms so dislocations can freely pass through the scale boundary and propagate inside the model just as it propagates in the deformed atomistic crystal structure. The method is verified first for seamless transition of variables at the scale boundary by a one-dimensional model and then verified for dislocation nucleation and propagation passing through scale boundaries in two cases, one is near the free surface and the other is inside of the copper nanowire. All the validations are through comparisons with fully atomistic analyses under same conditions. The comparison is satisfactory.  相似文献   

12.
干摩擦条件下天然橡胶/钢的磨损机理研究   总被引:3,自引:1,他引:2  
采用FALEX试验机考察了20^#钢/天然橡胶在干摩擦条件下的磨损机理。用扫描电子显微镜分析了20^#钢和橡胶磨损表面形貌。用X射线光电子能谱仪分析了金属和橡胶磨损表面元素的含量及化学状态,用镜面全反射傅立叶红外光谱仪分析了橡胶磨损表面官能团的变化。结果表明,20^#钢/天然橡胶摩擦副发生了粘着磨损,其磨损机制为:金属及金属氧化物与天然橡胶分子自由基在摩擦表面发生反应;在亚表层以金属与大分子自由基的反应为主,主要产物为含有Fe-C的金属-聚合物;金属本身发生氧化,主要产物为Fe2O3,FeO和Fe3O4,而在亚表层的主要产物以FeO为主,表面膜可能通过化学键、静电作用力和分子间的范德华力与金属基体相结合。  相似文献   

13.
On the basis of the density-functional theory, cluster models of the adsorption of oxygen atoms on aluminum oxide are constructed and the corresponding potential-energy surface is calculated. Quantum-mechanical calculations showed that it is necessary to take into account the angular dependence of the potential-energy surface and the relaxation of the surface monolayers. Using this surface in molecular dynamics calculations made it possible to obtain the probabilities of the heterogeneous recombination of oxygen atoms on the α-Al2O3 surface, which are in good agreement with experimental data. The calculations performed substantially decrease the amount of experimental investigations necessary reliably to describe the heterogeneous catalysis on promising reusable heat shield coatings for analyzing heat transfer during spacecraft entry into the atmosphere.  相似文献   

14.
Experiments are carried out to study flow and heat transfer characteristics over NACA0018 aerofoil when the body approaches the wall of a wind tunnel. Investigations have been done to study the effect of wall proximity due to flow separation around the body at Reynolds number 2.5 × 105, different height ratios and various angles of attack. The static pressure distribution has been measured on upper and lower surfaces of the aerofoil. The results have been presented in the form of pressure coefficient, drag coefficient for different height ratios. Pressure coefficient values are decreased and then increased on the lower surface of the aerofoil and decreased on the upper surface of the aerofoil at all angles of attack. The negative pressure coefficient and drag coefficient decreases as the body approaches the upper wall of wind tunnel. The maximum value of drag coefficient has been observed at an angle of attack 30° for the aerofoil at all height ratios. The Heat transfer experiments have been carried out under constant heat flux condition. Heat transfer coefficients are determined from the measured wall temperature and ambient temperature and presented in the form of Nusselt number. The variation of local as well as average Nusselt number has been shown with non dimensional distance for different angles of attack and for various height ratios. The local as well as average Nusselt number decreases as the height ratio decreases for all non-dimensional distance and angles of attack respectively. Maximum value of average Nusselt number has been observed at an angle of attack 40°.  相似文献   

15.
Within the framework of the theory of a hypersonic viscous shock layer a study is made of flow round wings of infinite span with blunt leading edges at various angles of attack and slip. Account is taken of multicomponent diffusion, and homogeneous chemical reactions, including dissociation-recombination reactions and exchange reactions. On the shock wave the generalized Rankine-Hugoniot conditions are given, and on the surface of the body conditions which allow for heterogeneous catalytic reactions of the first order with reaction rate constants depending [1] or not depending [2] on the temperature. The cases of an ideally catalytic and a noncatalytic surface are also considered. The surface of the body is assumed to be heatinsulated. A numerical study was made of the problem in a broad range of variation in the angles of attack and slip for different cases of prescribed constants representing the rates of the heterogeneous reactions. The conditions of the flow corresponded to the motion of a body which possess a lifting force along the trajectory of entry into the Earth's atmosphere [3]. The dependences are given of the equilibrium temperature of the surface along the stagnation line of the wing on the height of the flight and the distribution of this temperature along the surface of wings with parabolic and hyperbolic contours. It is shown that for flow regimes with a relatively high degree of dissociation in cases when the proportion of atoms recombined on the surface of the body is small, the dependences of the heat flow and the temperature of the surface on the angle of slip are of a nonmonotonic nature.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza., No. 6, pp. 127–135, November–December, 1984.  相似文献   

16.
The compressibility effect on the cylinder drag reduction due to air suction through the surface of a central body in a circular vortex cell is estimated on the basis of the solution of the steady Reynolds equations closed by the shear stress transfer model, together with the continuity, energy, and state equations.  相似文献   

17.
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The non-linear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0<t*<1 and reach the steady-state values for t*≥4.  相似文献   

18.
Steady state two-dimensional free convection heat transfer from a horizontal, isothermal fin attached cylinder, located between nearly two adiabatic walls is studied experimentally using a Mach–Zehnder interferometer. Effects of the walls inclination angel (θ) on heat transfer from the cylinder is investigated for Rayleigh number ranging from 1000 to 15,500. Two cylinders with different diameters of D = 10 and 20 mm are used to cover wide Rayleigh range. Results indicate that, heat transfer phenomena differ for different Rayleigh number. For Rayleigh numbers lower than 5500, heat transfer rate from cylinder surface is lower than the heat transfer from a single cylinder. In this range by the use of walls, heat transfer from the cylinder decreases slightly and walls’ inclination does not change heat transfer rate from the cylinder surface. For Rayleigh number ranging from 5500 to 15,500, amount of heat transfer from the cylinder surface is less than that of a single cylinder. However, by adding nearly adiabatic walls to experimental model heat transfer mechanism differs and chimney effect between fin and walls increases the heat transfer rate from the cylinder surface. By increasing the walls inclination angel from 0° to 20°, the chimney effect between walls and fin diminishes and heat transfer rate from the cylinder surface is approaching to the heat transfer rate of fin attached cylinder without adiabatic walls.  相似文献   

19.
The unsteady heat transfer at the stagnation point on a blunt body traveling at hypersonic velocity through a layer of nonuniform dusty gas with low-inertia particles (not deposited on the body surface) is investigated. Using the matched asymptotic expansion method, the equations of the two-phase unsteady boundary layer near the symmetry axis of the body are derived with account for the polydispersity of the particles. The structure of the unsteady boundary layer and the variation of the friction and heat transfer coefficients at the stagnation point are studied numerically. Layered nonuniformities of the particle concentration and size are considered, the limits of variation of the thermal and mechanicals loads are found, and the effect of the dust polydispersity on the heat transfer is investigated.  相似文献   

20.
In this article nonsimilarity solution for mixed convection from a horizontal surface in a saturated porous medium was obtained for the case of variable surface heat flux. The entire mixed convection regime, ranging from pure forced convection to pure free convection, is considered by introducing a single nonsimilarity parameter. Heat transfer results are predicted by employing four different flow models, namely, Darcy's law, the Ergun model, and the Brinkman-Forchheimer-extended Darcy model with constant and variable porosity. The variable porosity effect is approximated by an exponential function. Effects of transverse thermal dispersion are taken into consideration in the energy equation, along with variable stagnant thermal conductivities. The formulation of the present problem shows that the flow and heat transfer characteristics depend on five parameters, that is, the power in the variation of surface heat flux, the nonsimilarity mixed-convection parameter, the inertia effect parameter, the boundary effect parameter, and the ratio of thermal conductivity of the fluid phase to that of the solid phase. Numerical results for the local Nusselt number variations, based on the various flow models, are presented for the entire mixed convection regime. The impacts␣of different governing parameters on the heat transfer results are thoroughly investigated. Received on 7 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号