首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We used optical methods such as Laser Induced Fluorescence (LIF) and confocal Laser Scanning Microscopy (LSM) to characterize gas–liquid phase distribution in rectangular microchannels. Using a 2 m long microchannel with a hydraulic diameter of 200 μm enables the precise measurement of important parameters such as liquid slug length, bubble length, pressure drop and film thickness at the wall as well as in the corner of the microchannel for low Capillary numbers (Ca) ranging from 2 × 10−4 to 1 × 10−2. This range of Ca was obtained by using different fluid pairs such as ethanol, water and different concentrated aqueous solutions of glycerol in combination with nitrogen.  相似文献   

2.
Fluid forces on a very low Reynolds number airfoil and their prediction   总被引:1,自引:0,他引:1  
This paper presents the measurements of mean and fluctuating forces on an NACA0012 airfoil over a large range of angle (α) of attack (0-90°) and low to small chord Reynolds numbers (Rec), 5.3 × 103-5.1 × 104, which is of both fundamental and practical importance. The forces, measured using a load cell, display good agreement with the estimate from the LDA-measured cross-flow distributions of velocities in the wake based on the momentum conservation. The dependence of the forces on both α and Rec is determined and discussed in detail. It has been found that the stall of an airfoil, characterized by a drop in the lift force and a jump in the drag force, occurs at Rec ? 1.05 × 104 but is absent at Rec = 5.3 × 103. A theoretical analysis is developed to predict and explain the observed dependence of the mean lift and drag on α.  相似文献   

3.
4.
The influence of the liquid properties on the dynamical bubble shape and on the bubble motion has been investigated for bubbles moving under a downward facing inclined surface. The Morton number Mo varied from 2.59 × 10−11 to 2.52 × 10+01. The Bond number Bo covered the range from 10 to 150 and the surface inclination angle θ was varied from 2° to 6°. To cover the wide range of Mo, several liquids such as glycerine, propanediol, water and isopropanol were used. The results have shown that the relation Fr = Fr(BoMoθ) is not adequate to describe the bubble motion, where Fr is the terminal Froude number. The choice of the terminal Reynolds number Re as the dependent parameter, allowed the clarification of the role of the Morton number on the bubble motion. At a given Bond number, the bubble Reynolds number decreases monotonously with the Morton number. Furthermore, an empirical correlation Re = Re(BoMoθ) is given that can be readily used in the mathematical modelling of bubble laden flows under solids.  相似文献   

5.
In the present study, liquid film thicknesses in parallel channels with heights of H = 0.1, 0.3 and 0.5 mm are measured with two different optical methods, i.e., interferometer and laser focus displacement meter. Ethanol is used as a working fluid. Liquid film thicknesses obtained from two optical methods agree very well. At low capillary numbers, dimensionless liquid film thickness is in accordance with Taylor’s law. However, as capillary number increases, dimensionless liquid film thickness becomes larger than Taylor’s law for larger channel heights. It is attributed to the dominant inertial effect at high capillary numbers. Using channel height H for dimensionless liquid film thickness δ0/H and hydraulic diameter Dh = 2H as the characteristic length for Reynolds and Weber numbers, liquid film thickness in a parallel channel can be predicted well by the circular tube correlation previously proposed by the authors. This is because curvature differences between bubble nose and flat film region are identical in circular tubes and parallel channels.  相似文献   

6.
Saturation boiling of PF-5060 dielectric liquid on Cu micro-porous surface layers (95, 139, 171, 197 and 220-μm thick) is investigated. These layers are deposited on 10 × 10 mm Cu substrates using two-stage electrochemical process. The basic micro-structure, obtained in the first stage using current density of 3 A/cm2 for 15–44 s, depending on thickness, is strengthened by continuing electrochemical deposition using much lower current density for 10’s of minutes. For conditioned surface layers, after a few successive boiling tests, the pool boiling curves are reproducible and the temperature excursion prior to boiling incipience is either eliminated or reduced <7 K. Present nucleate boiling results are markedly better than those reported for dielectric liquids on micro- and macro-structured surfaces. Present values of CHF (22.7–27.8 W/cm2) and hMNB (2.05–13.5 W/cm2 K) are ∼40–70% higher than and >17 times those reported on plane surfaces (<16 W/cm2 and ∼0.8 W/cm2 K). Best results are those of the 171-μm thick layer: CHF of 27.8 W/cm2 occurs at ΔTsat of only 2.1 K and hMNB of 13.5 W/cm2 K occurs at ΔTsat = 2.0 K.  相似文献   

7.
To promote a better understanding of liquid–liquid two-phase flow behavior, particularly under high pressure, flow patterns of n-hexadecane–CO2 liquid–liquid two-phase upward flow in vertical stainless steel pipes were experimentally investigated. Observations were made in two 0.0015 m I.D. pipes of different lengths (0.068 m and 0.5 m) under high pressure varying from 10.3 to 29.6 MPa using a high pressure visualization system. The total flow rate was fixed at 2.0 × 10−6 m3/min, while the flow rate ratio (φ) varied from 0.05 to 19. Bubbly flow, plug flow, slug flow, annular flow, and near-one-phase flow regions were found in both pipes, while stratified flow was observed only in the 0.068 m pipe. Flow pattern maps were constructed in the flow rate ratio versus pressure graph, which demonstrates significant impacts of flow rate ratio, pipe length, and pressure on flow patterns. These impacts are discussed in detail. To the authors’ best knowledge, this work is the first attempt to observe complex liquid–liquid two-phase flow behavior with flow pattern transitions under high pressure, and contributes to a better understanding of liquid–liquid two-phase flow behavior.  相似文献   

8.
The instability of circular liquid jet immersed in a coflowing high velocity air stream is studied assuming that the flow of the viscous gas and liquid is irrotational. The basic velocity profiles are uniform and different. The instabilities are driven by Kelvin–Helmholtz instability due to a velocity difference and neckdown due to capillary instability. Capillary instabilities dominate for large Weber numbers. Kelvin–Helmholtz instability dominates for small Weber numbers. The wavelength for the most unstable wave decreases strongly with the Mach number and attains a very small minimum when the Mach number is somewhat larger than one. The peak growth rates are attained for axisymmetric disturbances (n = 0) when the viscosity of the liquid is not too large. The peak growth rates for the first asymmetric mode (n = 1) and the associated wavelength are very close to the n = 0 mode; the peak growth rate for n = 1 modes exceeds n = 0 when the viscosity of the liquid jet is large. The effects of viscosity on the irrotational instabilities are very strong. The analysis predicts that breakup fragments of liquids in high speed air streams may be exceedingly small, especially in the transonic range of Mach numbers.  相似文献   

9.
This study yielded a mathematical expression to calculate the pressure gradient (ΔP/L)m of the flow of a spherical capsule train. An experimental investigation was carried out to determine pressure drops of two-phase mixture flow of spherical ice capsules and water inside the pipelines of cooling systems. Instead of ice capsules, spherical capsules made of polypropylene material whose density (870 kg/m3) is similar to that of ice were used in the experiments. Flow behavior of the spherical capsules, 0.08 m outer diameter, was observed in the measuring section inside plexiglass pipes, 0.1 m inner diameter (ID) and 6 m in length; pressure drops were measured on the 4 m section. The investigation was carried out in the 1.2 × 104 < Re < 1.5 × 105 range and under transport concentration (Ctr) by 5–30%. Dimensionless numbers of the physical event were found out by conducting a dimensional analysis, so that mixture density was expressed in terms of specific gravity and in situ concentration. After arriving at certain conclusions based on the relevant experimental findings and observations, empirical and mathematical models which can be used for calculation of the pressure gradient were developed. Comparison of the mathematical model with the experimental findings revealed that pressure drop values deviated by 2.7% on average for 2.5 × 104 < Re < 1.5 × 105.  相似文献   

10.
Results are reported of an experimental investigation of gas–liquid counter-current flow in a vertical rectangular channel with 10 mm gap, at rather short distances from liquid entry. Flooding experiments are carried out using air and various liquids (i.e., water, 1.5% and 2.5% aqueous butanol solutions) at liquid Reynolds numbers ReL < 350. Visual observations and fast recordings suggest that the onset of flooding at low ReL (<250) is associated with liquid entrainment from isolated waves, whereas “local bridging” is dominant at the higher ReL examined in this study. Significant reduction of flooding velocities is observed with decreasing interfacial tension, as expected. Instantaneous film thickness measurements show that under conditions approaching flooding, a sharp increase of the mean film thickness, of mean wave amplitude and of the corresponding RMS values takes place. Film thickness power spectra provide evidence that by increasing gas flow the wave structure is significantly affected; e.g., the dominant wave frequency is drastically reduced. These data are complemented by similar statistical information from instantaneous wall shear stress measurements made with an electrochemical technique. Power spectra of film thickness and of shear stress display similarities indicative of the strong effect of waves on wall stress; additional evidence of the drastic changes in the liquid flow field near the wall due to the imposed gas flow, even at conditions below flooding, is provided by the RMS values of the wall stress. A simple model is presented for predicting the mean film thickness and mean wall shear stress under counter-current gas–liquid flow, below critical flooding velocities.  相似文献   

11.
Accurate measurements of the interfacial wave structure of upward annular two-phase flow in a vertical pipe were performed using a laser focus displacement meter (LFD). The purpose of this study was to clarify the effectiveness of the LFD for obtaining detailed information on the interfacial displacement of a liquid film in annular two-phase flow and to investigate the effect of axial distance from the air–water inlet on the phenomena. Adiabatic upward annular air–water flow experiments were conducted using a 3 m long, 11 mm ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart in the pipe. The axial distances from the inlet (z) normalized by the pipe diameter (D) varied over z/D = 50–250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from ReG = 31,800 to 98,300 for the gas phase and ReL = 1050 to 9430 for the liquid phase. Using the LFD, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreasing film thickness and passing frequency, persisted until the end of the pipe, which means that the flow might never reach the fully developed state. The minimum film thickness decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman’s three-layer model. A correlation is proposed between the minimum film thickness obtained in relation to the interfacial shear stress and the Reynolds number of the liquid.  相似文献   

12.
A scaling analysis based on the field equations for two phases and the jump conditions at the interface is carried out to deduce a balance of forces acting on a Taylor drop rising through stagnant liquid in a vertical pipe. The force balance is utilized to deduce a functional form of an empirical correlation of terminal velocity of the Taylor drop. Undetermined coefficients in the correlation are evaluated by making use of available correlations for two limiting cases, i.e. extremely high and low Reynolds number Taylor bubbles in large pipes. Terminal velocity data obtained by interface tracking simulations are also used to determine the coefficients. The proposed correlation expresses the Froude number Fr as a function of the drop Reynolds number ReD, the Eötvös number EoD and the viscosity ratio μ*. Comparisons between the correlation, simulations and experimental data confirm that the proposed correlation is applicable to Taylor drops under various conditions, i.e., 0.002 < ReD < 4960, 4.8 < EoD < 228, 0 ? μ* ? 70, 1 < N < 14700, −12 < log M < 4, and d/D < 1.6, where N is the inverse viscosity number, M the Morton number, d the sphere-volume equivalent drop diameter and D the pipe diameter.  相似文献   

13.
The equilibrated grain boundary groove shapes for solid Zn solution (Zn-3.0 at.% Al-0.3 at.% Bi) in equilibrium with the Zn-Al-Bi eutectic liquid (Zn-12.7 at.% Al-1.6 at.% Bi) have been observed from quenched sample with a radial heat flow apparatus. Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy for solid Zn solution in equilibrium with Al-Bi-Zn eutectic liquid have been determined to be (5.1 ± 0.4) × 10−8 K m, (80.1 ± 9.6) × 10−3 and (158.6 ± 20.6) × 10−3 J m−2 from the observed grain boundary groove shapes, respectively. The thermal conductivity variation with temperature for solid Zn solution has been measure with radial heat flow apparatus and the value of thermal conductivity for solid Zn solution has been determined to be 135.68 W/km at the eutectic melting temperature. The thermal conductivity ratio of equilibrated eutectic liquid to solid Zn solution, R = KL(Zn)/KS(Zn) has also been measured to be 0.85 with Bridgman type solidification apparatus.  相似文献   

14.
Solid–liquid two-phase flow in a finite Reynolds number range (2 < Re < 12), transporting neutrally-buoyant microspheres with diameters of 6, 10, and 16 μm through a 260-μm microcapillary, is investigated. A standard microparticle-tracking velocimetry (μ-PTV) that consists of a double-pulsed Nd:YAG laser, an epi-fluorescent microscope, and a cooled-CCD camera is used to examine the flow. The solid particles are visualized in view of their spatial distributions. We observe a strong radial migration of the particles across the flow streamlines at substantially small Re. The degree of particle migration is presented in terms of probability density function. Some applications based on this radial migration phenomena are discussed in conjunction with particle separation/concentration in microfluidic devices, where the spatial distribution of particles is of great importance. In doing so, we propose a particle-trajectory function to empirically construct the spatial distribution of solid particles, which is well correlated with our experimental data. It is believed that this function provides a simple method for estimating the spatial distribution of particles undergoing radial migration in solid–liquid two-phase flows.  相似文献   

15.
This paper documents the numerical investigation of the effects of non-uniform magnetic fields, i.e. magnetic-ribs, on a liquid–metal flowing through a two-dimensional channel. The magnetic ribs are physically represented by electric currents flowing underneath the channel walls. The Lorentz forces generated by the magnetic ribs alter the flow field and, as consequence, the convective heat transfer and wall shear stress. The dimensionless numbers characterizing a liquid–metal flow through a magnetic field are the Reynolds (Re) and the Stuart (N) numbers. The latter provides the ratio of the Lorentz forces and the inertial forces. A liquid–metal flow in a laminar regime has been simulated in the absence of a magnetic field (ReH = 1000, N = 0), and in two different magnetic ribs configurations for increasing values of the Stuart number (ReH = 1000, N equal to 0.5, 2 and 5). The analysis of the resulting velocity, temperature and force fields has revealed the heat transport phenomena governing these magneto-hydro-dynamic flows. Moreover, it has been noticed that, by increasing the strength of the magnetic field, the convective heat transfer increases with local Nusselt numbers that are as much 27.0% larger if compared to those evaluated in the absence of the magnetic field. Such a convective heat transfer enhancement has been obtained at expenses of the pressure drop, which increases more than twice with respect to the non-magnetic case.  相似文献   

16.
Gas–solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid–particle force F on solid volume fraction ? and the Reynolds number based on the mean slip velocity Rem. In this work we report particle-resolved direct numerical simulation (DNS) results of interphase momentum transfer in flow past fixed random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier–Stokes solver. This solver is based on a new formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal advantage of this formulation is that the fluid stress at the particle surface is calculated directly from the flow solution (velocity and pressure fields), which when integrated over the surfaces of all particles yields the average fluid–particle force. We demonstrate that PUReIBM is a consistent numerical method to study gas–solid flow because it results in a force density on particle surfaces that is reconcilable with the averaged two-fluid theory. The numerical convergence and accuracy of PUReIBM are established through a comprehensive suite of validation tests. The normalized average fluid–particle force F is obtained as a function of solid volume fraction ? (0.1 ? ? ? 0.5) and mean flow Reynolds number Rem (0.01 ? Rem ? 300) for random assemblies of monodisperse spheres. These results extend previously reported results of  and  to a wider range of ?, Rem, and are more accurate than those reported by Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the drag correlation of Beetstra et al. (2007) are as high as 30% for Rem in the range 100–300. We take advantage of PUReIBM’s ability to directly calculate the relative contributions of pressure and viscous stress to the total fluid–particle force, which is useful in developing drag correlations. Using a scaling argument, Hill et al. (2001b) proposed that the viscous contribution is independent of Rem but the pressure contribution is linear in Rem (for Rem > 50). However, from PUReIBM simulations we find that the viscous contribution is not independent of the mean flow Reynolds number, although the pressure contribution does indeed vary linearly with Rem in accord with the analysis of Hill et al. (2001b). An improved correlation for F in terms of ? and Rem is proposed that corrects the existing correlations in Rem range 100–300. Since this drag correlation has been inferred from simulations of fixed particle assemblies, it does not include the effect of mobility of the particles. However, the fixed-bed simulation approach is a good approximation for high Stokes number particles, which are encountered in most gas–solid flows. This improved drag correlation can be used in CFD simulations of fluidized beds that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior.  相似文献   

17.
Three phase liquid–liquid–gas flow maps in pipes of medium inner diameters (5.6 mm and 7 mm), are presented. A low viscosity paraffin oil (4.5 × 10−3 Pa s viscosity and 818.5 kg m−3 density at 20 °C), deionised water and air are flowing concurrently in Schott Duran® glass pipes. A decreasing pipe diameter changes the flow pattern maps and also the behavior of the transition boundaries. Flow patterns are determined by high speed photography. To illuminate the pipe, laser induced fluorescence (LIF) is applied. The laser sheet is cutting through the axial vertical plane of the pipe. The laser light excites a fluorescent dye (uranine) in the water phase to separate the phases optically. The resulting flow maps are compared with literature data and a theoretical model.  相似文献   

18.
A series of tensile tests of Sn–3Ag–0.5Cu and Sn–0.7Cu lead-free solders were investigated at various strain rates from 1 × 10−4 s−1 to 1 × 10−2 s−1 and over a wide temperature range from 25 oC to 150 oC. Two-step strain rate jump tests, three-step short term creep tests with stress jump, and uniaxial ratcheting tests were also conducted. Based on the test data, a new constitutive model was proposed with a simple formulation and only eight material constants which can be easily obtained. The model employs two carefully defined back stress components to simulate the loading/unloading asymmetry phenomenon in uniaxial ratcheting tests. Different evolution rules of short-range back stress were given for loading and unloading stage, which provides the model ability to simulate the asymmetry in hysteresis loops. The proposed model presents good simulation of uniaxial tensile tests, strain rate jump tests, short term creep tests with stress jump, and uniaxial ratcheting tests.  相似文献   

19.
This study focuses on understanding how the presence of particles, in homogeneous turbulence decay, affects the dissipation of dissipation coefficient within the volume averaged dissipation transport equation. In developing this equation, the coefficient for dissipation of dissipation was assumed to be the sum of the single phase coefficient and an additional coefficient that is related to the effects of the dispersed phase. Direct numerical simulation was used to isolate the effect of stationary particles in homogeneous turbulent decay at low Reynolds numbers (ReL = 3.3 and 12.5). The particles were positioned at each grid point and modeled as point forces and a comparison was made between a 643 and 1283 domain. The results show that the dissipation of dissipation coefficient correlates well with a dimensionless parameter called the momentum coupling factor.  相似文献   

20.
In this work we present an investigation of viscoelastic flow in a planar sudden expansion with expansion ratio D/d = 4. We apply the modified FENE–CR constitutive model based on the non-linear finite extensibility dumbbells (FENE) model. The governing equations were solved using a finite volume method with the high-resolution CUBISTA scheme utilised for the discretisation of the convective terms in the stress and momentum equations. Our interest here is to investigate two-dimensional steady-state solutions where, above a critical Reynolds number, stable asymmetric flow states are known to occur. We report a systematic parametric investigation, clarifying the roles of Reynolds number (0.01 < Re < 100), Weissenberg number (0 < We < 100) and the solvent viscosity ratio (0.3 < β < 1). For most simulations the extensibility parameter of the FENE model was kept constant, at a value L2 = 100, but some exploration of its effect in the range 100–500 shows a rather minor influence. The results given comprise flow patterns, streamlines and vortex sizes and intensities, and pressure and velocity distributions along the centreline (i.e. y = 0). For the Newtonian case, in agreement with previous studies, a bifurcation to asymmetric flow was observed for Reynolds numbers greater than about 36. In contrast viscoelasticity was found to stabilise the flow; setting β = 0.5 and We = 2 as typical values, resulted in symmetric flow up to a Reynolds number of about 46. We analyse these two cases in particular detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号