首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extended formulation of Darcy's two-phase law is developed on the basis of Stokes' equations. It leads, through results borrowed from the thermodynamics of irreversible processes, to a matrix of relative permeabilities. Nondiagonal coefficients of this matrix are due to the viscous coupling exerted between fluid phases, while diagonal coefficients represent the contribution of both fluid phases to the total flow, as if they were alone. The coefficients of this matrix, contrary to standard relative permeabilities, do not depend on the boundary conditions imposed on two-phase flow in porous media, such as the flow rate. This formalism is validated by comparison with experimental results from tests of two-phase flow in a square cross-section capillary tube and in porous media. Coupling terms of the matrix are found to be nonnegligible compared to diagonal terms. Relationships between standard relative permeabilities and matrix coefficients are studied and lead to an experimental way to determine the new terms for two-phase flow in porous media.  相似文献   

2.
3.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role on the dynamics of the front. In particular, when the mobility ratio is favorable, the viscous coupling induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this first paper, we focus on flows in stratified reservoirs, with stratification parallel to the mean flow. Our results allow to predict the evolution of large Fourier mode of the front, and the emergence of a stationary front, for favorable mobility ratios. Numerical experiments confirm our predictions. Our approach is applied to downscaling. Extension of our theory to isotropic media is presented in the companion paper.  相似文献   

4.
While it is generally assumed that in the viscous flow regime, the two-phase flow relative permeabilities in fractured and porous media depend uniquely on the phase saturations, several studies have shown that for non-Darcian flows (i.e., where the inertial forces are not negligible compared with the viscous forces), the relative permeabilities not only depend on phase saturations but also on the flow regime. Experimental results on inertial single- and two-phase flows in two transparent replicas of real rough fractures are presented and modeled combining a generalization of the single-phase flow Darcy’s law with the apparent permeability concept. The experimental setup was designed to measure injected fluid flow rates, pressure drop within the fracture, and fluid saturation by image processing. For both fractures, single-phase flow experiments were modeled by means of the full cubic inertial law which allowed the determination of the intrinsic hydrodynamic parameters. Using these parameters, the apparent permeability of each fracture was calculated as a function of the Reynolds number, leading to an elegant means to compare the two fractures in terms of hydraulic behavior versus flow regime. Also, a method for determining the experimental transition flow rate between the weak inertia and the strong inertia flow regimes is proposed. Two-phase flow experiments consisted in measuring the pressure drop and the fluid saturation within the fractures, for various constant values of the liquid flow rate and for increasing values of the gas flow rate. Regardless of the explored flow regime, two-phase flow relative permeabilities were calculated as the ratio of the single phase flow pressure drop per unit length divided by the two-phase flow pressure drop per unit length, and were plotted versus the measured fluid saturation. Results confirm the dependence of the relative permeabilities on the flow regime. Also the proposed generalization of Darcy’s law shows that the relative permeabilities versus fluid saturation follow physical meaningful trends for different liquid and gas flow rates. The presented model fits correctly the liquid and gas experimental relative permeabilities as well as the fluid saturation.  相似文献   

5.
Evaluation of relative permeability coefficients is one of the key steps in reliable simulation of two-phase flow in porous media. An extensive body of work exists on evaluation of these coefficients for two-phase flow under pressure gradient. Oil transport under an applied electrical gradient in porous media is also governed by the principles of two-phase flow, but is less understood. In this paper, relative permeability coefficients under applied electric field are evaluated for a specific case of two- phase fluid flow in water-wet porous media, where the second fluid phase is oil. It is postulated that the viscous drag on the oil phase, exerted by the electro-osmotic flow of the water phase, is responsible for the transport of oil in the absence of a pressure gradient. Reliable prediction of the flow patterns necessitates accurate representation and determination of the relative permeability coefficients under the electrical gradient. The contribution of each phase to the flow is represented mathematically, and the relative permeability coefficients are evaluated through electro-osmotic flow measurements conducted on oil bearing rock cores.  相似文献   

6.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role in the dynamics of the front. In particular, when the mobility ratio is favorable, it induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this companion paper, we focus on flows in isotropic media. Our results predict the dynamics of the water–oil front for favorable mobility ratios. We show that the statistics of the front reach a stationary limit, as a function of the geostatistics of the permeability field and of the mobility ratio evaluated across the front. Results of numerical experiments and Monte-Carlo analysis confirm our predictions.  相似文献   

7.
In the case of coupled, two-phase flow of fluids in porous media, the governing equations show that there are four independent generalized permeability coefficients which have to be measured separately. In order to specify these four coefficients at a specific saturation, it is necessary to conduct two types of flow experiments. The two types of flow experiments used in this study are cocurrent and countercurrent, steady-state permeability experiments. It is shown that, by taking this approach, it is possible to define the four generalized permeability coefficients in terms of the conventional cocurrent and countercurrent effective permeabilities for each phase. It is demonstrated that a given generalized phase permeability falls about midway between the conventional, cocurrent effective permeability for that phase, and that for the countercurrent flow of the same phase. Moreover, it is suggested that the conventional effective permeability for a given phase can be interpreted as arising out of the effects of two types of viscous drag: that due to the flow of a given phase over the solid surfaces in the porous medium and that due to momentum transfer across the phase 1-phase 2 interfaces in the porous medium. The magnitude of the viscous coupling is significant, contributing at least 15% to the total conventional cocurrent effective permeability for both phases. Finally, it is shown that the nontraditional generalized permeabilities which arise out of viscous coupling effects cannot equal one another, even when the viscosity ratio is unity and the surface tension is zero.  相似文献   

8.
A new formalism is developed to describe the viscous coupling phenomena between two immiscible, flowing fluids in porous media. The formulation is based on the notation of ‘two-phase mixture’ in which the relative motion between an individual phase and the mixture in porous media can be described by a diffusion equation. The present formulation is derived from Darcy's law with cross-terms without making further approximations. However, the new formulation requires fewer effective parameters to be determined experimentally, thus offering a more viable tool for the study of two-phase flow dynamics with viscous coupling in porous media. Moreover, it is found that no new term appears in the present model in cases with and without viscous coupling; instead, the incorporation of viscous coupling only modifies the effective parameters. It can thus be concluded that viscous coupling does not represent a fundamentally new phenomenon within the framework of the present formulation.  相似文献   

9.
Adding surfactant into the displacing aqueous phase during surfactant-enhanced aquifer remediation of NAPL contamination and in chemical flooding oil recovery significantly changes interfacial tension (IFT) (σ) on water–oil interfaces within porous media. The change in IFT may have a large impact on relative permeability for the two-phase flow system. In most subsurface flow investigations, however, the influence of IFT on relative permeability has been ignored. In this article, we present an experimental study of two-phase relative- permeability behavior in the low and more realistic ranges of IFT for water–oil systems. The experimental work overcomes the limitations of the existing laboratory measurements of relative permeability (which are applicable only for high ranges of IFT (e.g., σ > 10−2 mN/m). In particular, we have (1) developed an improved steady-state method of measuring complete water–oil relative permeability curves; (2) proven that a certain critical range of IFT exists such that IFT has little impact on relative permeability for σ greater than this range, while within the range, relative permeabilities to both water and oil phases will increase with decreasing IFT; and (3) shown that a functional correlation exists between water–oil two-phase relative permeability and IFT. In addition, this work presents such correlation formula between water–oil two-phase relative permeability and IFT. The experimental results and proposed conceptual models will be useful for quantitative studies of surfactant-enhanced aquifer remediation and chemical flooding operations in reservoirs.  相似文献   

10.
11.
A parametric experimental investigation of the coupling effects during steady-state two-phase flow in porous media was carried out using a large model pore network of the chamber-and-throat type, etched in glass. The wetting phase saturation,S 1, the capillary number,Ca, and the viscosity ratio,k, were changed systematically, whereas the wettability (contact angleθ e ), the coalescence factorCo, and the geometrical and topological parameters were kept constant. The fluid flow rate and the pressure drop were measured independently for each fluid. During each experiment, the pore-scale flow mechanisms were observed and videorecorded, and the mean water saturation was determined with image analysis. Conventional relative permeability, as well as generalized relative permeability coefficients (with the viscous coupling terms taken explicitly into account) were determined with a new method that is based on a B-spline functional representation combined with standard constrained optimization techniques. A simple relationship between the conventional relative permeabilities and the generalized relative permeability coefficients is established based on several experimental sets. The viscous coupling (off-diagonal) coefficients are found to be comparable in magnitude to the direct (diagonal) coefficients over board ranges of the flow parameter values. The off-diagonal coefficients (k rij /Μ j ) are found to be unequal, and this is explained by the fact that, in the class of flows under consideration, microscopic reversibility does not hold and thus the Onsager-Casimir reciprocal relation does not apply. Thecoupling indices are introduced here; they are defined so that the magnitude of each coupling index is the measure of the contribution of the coupling effects to the flow rate of the corresponding fluid. A correlation of the coupling indices with the underlying flow mechanisms and the pertinent flow parameters is established.  相似文献   

12.
蔡少斌  杨永飞  刘杰 《力学学报》2021,53(8):2225-2234
为了研究深层油气资源在岩石多孔介质内的运移过程, 使用一种基于Darcy-Brinkman-Biot的流固耦合数值方法, 结合传热模型, 完成了Duhamel-Neumann热弹性应力的计算, 实现了在孔隙模拟多孔介质内的考虑热流固耦合作用的两相流动过程. 模型通过求解Navier-Stokes方程完成对孔隙空间内多相流体的计算, 通过求解Darcy方程完成流体在岩石固体颗粒内的计算, 二者通过以动能方式耦合的形式, 计算出岩石固体颗粒质点的位移, 从而实现了流固耦合计算. 在此基础上, 加入传热模型考虑温度场对两相渗流过程的影响. 温度场通过以产生热弹性应力的形式作用于岩石固体颗粒, 总体上实现热流固耦合过程. 基于数值模型, 模拟油水两相流体在二维多孔介质模型内受热流固耦合作用的流动过程. 研究结果表明: 热应力与流固耦合作用产生的应力方向相反, 使得总应力比单独考虑流固耦合作用下的应力小; 温度的增加使得模型孔隙度增加, 但当注入温差达到150 K后, 孔隙度不再有明显增加; 温度的增加使得水相的相对渗流能力增加, 等渗点左移.   相似文献   

13.
A look into the literature on the temperature dependency of oil and water relative permeabilities reveals contradictory reports. There are some publications reporting shifts in the water saturation range as well as variations in the relative permeability curves by temperature. On the other hand, some authors have blamed the experimental artifacts, viscous instabilities and fingering issues for these variations. We have performed core flooding experiments to further investigate this issue. Glass bead packs and sand packs were used as the porous media, and Athabasca bitumen with varying viscosities was displaced by hot water at differing temperatures. The unsteady-state method of relative permeability measurement was applied and the experimental data were history matched by a simulator that is tailor made to predict the relative permeabilities. The matches were obtained by varying the relative permeability correlation parameters. The results indicated that the initial water saturation has a direct relation with temperature, while residual oil saturation generally drops at higher temperatures. Although the water saturation range shifts, no direct and unique trend for either oil or water relative permeability is justified. The spread in relative permeabilities especially in the case of higher permeable cores suggests that viscous instabilities are present. As the same saturation shift happens by only changing the oil viscosity, the relative permeability variations with temperature can be attributed to oil to water viscosity ratio changes with temperature. Temperature dependency of relative permeabilities is more related to experimental artifacts, viscous fingering and viscosity changes than fundamental flow properties.  相似文献   

14.
The balance of viscous, capillary and gravity forces strongly affects two-phase flow through porous media and can therefore influence the choice of appropriate methods for numerical simulation and upscaling. A strict separation of the effects of these various forces is not possible due to the nature of the nonlinear coupling between the various terms in the transport equations. However, approximate prediction of this force balance is often made by calculation of dimensionless quantities such as capillary and gravity numbers. We present an improved method for the numerical analysis of simulations which recognises the changing balance of forces – in both space and time – in a given domain. The classical two-phase transport equations for immiscible incompressible flow are expressed in two forms: (i) the convection–diffusion-gravity (CDG) formulation where convection and diffusion represent viscous and capillary effects, respectively, (ii) the oil pressure formulation where the viscous effects are attributed to the product of mobility difference and the oil pressure gradient. Each formulation provides a different perspective on the balance of forces although the two forms are equivalent. By discretising the different formulations, the effect of each force on the rate of change of water saturation can be calculated for each cell, and this can be analysed visually using a ternary force diagram. The methods have been applied to several simple models, and the results are presented here. When model parameters are varied to determine sensitivity of the estimators for the balance of forces, the CDG formulation agrees qualitatively with what is expected from physical intuition. However, the oil pressure formulation is dominated by the steady-state solution and cannot be used accurately. In addition to providing a physical method of visualising the relative magnitudes of the viscous, gravity and capillary forces, the local force balance may be used to guide our choice of upscaling method.  相似文献   

15.
Effects manifested in two-phase flows through anisotropic porous reservoirs with monoclinic and triclinic characteristics are analyzed. It is shown that in two-phase flows through media with monoclinic and triclinic symmetries of flow characteristics the position of the principal axes of the phase permeability tensors depends on the saturation and does not coincide with the position of the principal axes of the absolute permeability tensor in single-phase flows and that going over from single-to two-phase flow may lead to a change in the symmetry group of the flow characteristics. A general representation of the phase permeability tensor components is presented and formulas are given for the diagonal and nondiagonal components of the relative phase permeabilities, which are universal and can be used for anisotropic media with any type of anisotropy (symmetry) of flow characteristics. A complex of laboratory tests for finding the nondiagonal components of the phase and relative phase permeability tensors is discussed.  相似文献   

16.
17.
In three-phase flow, the macroscopic constitutive relations of capillary pressure and relative permeability as functions of saturation depend in a complex manner on the underlying pore occupancies. These three-phase pore occupancies depend in turn on the interfacial tensions, the pore sizes and the degree of wettability of the pores, as characterised by the cosines of the oil–water contact angles. In this work, a quasi-probabilistic approach is developed to determine three-phase pore occupancies in media where the degree of wettability varies from pore to pore. Given a set of fluid and rock properties, a simple but novel graphical representation is given of the sizes and oil–water contact angles underlying three-phase occupancies for every allowed combination of capillary pressures. The actual phase occupancies are then computed using the contact angle probability density function. Since a completely accessible porous medium is studied, saturations, capillary pressures, and relative permeabilities are uniquely related to the pore occupancies. In empirical models of three-phase relative permeability it is of central importance whether a phase relative permeability depends only on its own saturation and how this relates to the corresponding two-phase relative permeability (if at all). The new graphical representation of pore sizes and wettabilities clearly distinguishes all three-phase pore occupancies with respect to these saturation-dependencies. Different types of saturation-dependencies may occur, which are shown to appear in ternary saturation diagrams of iso-relative permeability curves as well, thus guiding empirical approaches. However, for many saturation combinations three-phase and two-phase relative permeabilities can not be linked. In view of the latter, the present model has been used to demonstrate an approach for three-phase flow modelling on the basis of the underlying pore-scale processes, in which three-phase relative permeabilities are computed only along the actual flow paths. This process-based approach is used to predict an efficient strategy for oil recovery by simultaneous water-alternating-gas (SWAG) injection.  相似文献   

18.
A new interpretation of the concept of relative phase permeability is given. Relative phase permeabilities are represented in the form of fourth-rank tensors. It is shown that in the case of anisotropic porous media functions depending not only on the saturation but also on the anisotropy parameters represented in the form of ratios of the principal values of the absolute permeability coefficient tensor correspond to the classical representation of the relative phase permeabilities. For a two-phase flow in anisotropic porous media with orthotropic and transversely-isotropic symmetry a generalized two-term Darcy’s law is analyzed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 87–94, March–April, 1998. The work was carried out with support from the Russian Foundation for Fundamental Research (project No. 96-01-00623).  相似文献   

19.
In this paper we compare two models for flow in porous media. The first is the well known Richards' equation, which is based on the assumption that the air in the unsaturated zone has infinite mobility. This means that it models a single phase. In the second and more general full two-phase approach, the air is considered as a separate phase. Here, we use the fractional flow equation.We study the difference between the two models numerically by varying the relative contribution of the different physical terms (the gravity and the total velocity) in the fractional flow equation. Richards' equation is considered as the limit of the fractional flow approach when the mobility of the air-phase tends to infinity. In particular, we are interested in determining the parameter intervals where the two models differ significantly, and we will quantify the asymptotic behavior.The equations are studied in the two-dimensional (2D) case. The study is based on a relative permeability depending quadratically on the saturation, and a capillary pressure expressed by a cubic function of the saturation.  相似文献   

20.
Fluid displacement in porous media plays an important role in many industrial applications, including biological filtration, carbon capture and storage, enhanced oil recovery, and fluid transport in fuel cells. The displacement front is unstable, which evolves from smooth into ramified patterns, when the mobility (ratio of permeability to viscosity) of the displacing fluid is larger than that of the displaced one; this phenomenon is called viscous fingering. Viscous fingering increases the residual saturation of the displaced fluid, considerably impairing the efficacy of fluid displacement. It is of practical importance to develop suitable methods to improve fluid displacement. This paper presents an experimental study on applying the discontinuity of capillary pressure to improve immiscible fluid displacement in drainage for which the displacing fluid (air) wets the porous media less preferentially than does the displaced fluid (silicone oil). The concept involves using a heterogeneous packing system, where the upstream region features large pores and small capillary pressure, and the downstream region features small pores and large capillary pressure. The increase in capillary pressure prevents fingering from directly crossing the media interface, thus enhancing the displacement. The experimental apparatus was a linear cell comprising porous media between two parallel plates, and glass beads of 0.6 and 0.125 mm diameter were packed to compose the heterogeneous porous media. The time history of the finger flow was recorded using a video camera. Pressure drops over the model from the inlet to the outlet were measured to compare viscous pressure drops with capillary pressures. The results show that the fluid displacement was increased by the capillary discontinuities. The optimal displacement was determined through linear regression by adjusting the relative length of the large- and small-pore region. The results may assist in the understanding of fingering flow across the boundaries of different grain-sized bands for the gas and oil reservoir management, such as setting the relative location of the injection and production wells. The findings may also serve as a reference for industrial applications such as placing the grain bands in an adequate series to improve the displacement efficacy in biological filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号