首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow of an Oldroyd 8‐constant non‐Newtonian MHD fluid is investigated analytically and numerically. The governing equations for the flow field are derived for a steady one‐dimensional flow. The effect of constant applied magnetic field is included and its influence on the flow field is studied. The nonlinear governing equation along with nonlinear boundary conditions is solved analytically and the solution is obtained in an elegant way. Numerical solutions are also obtained using higher order Chebyshev spectral methods. The influence of various non‐Newtonian parameters and applied magnetic field is investigated. Results showing the effect of various physical parameters of the flow are presented and investigated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The main interest of the present investigation is to generate exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow motion due to a disk rotating with a constant angular speed. For an external uniform magnetic field applied perpendicular to the plane of the disk, the governing equations allow an exact solution to develop taking into account of the rotational non-axisymmetric stationary conducting flow.Making use of the analytic solution, exact formulas for the angular velocity components as well as for the wall shear stresses are extracted. It is proved analytically that for the specific flow the properly defined thicknesses decay as the magnetic field strength increases in magnitude. Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. The temperature field is shown to accord with the dissipation and the Joule heating. According to Fourier's heat law, a constant heat transfer from the disk to the fluid occurs, though decreases for small magnetic fields because of the dominance of Joule heating, it eventually increases for growing magnetic field parameters.  相似文献   

3.
Entropy generation due to fluid flow and heat transfer inside a horizontal channel made of two parallel plates under the effect of transverse magnetic field is numerically investigated. The flow is assumed to be steady, laminar, hydro-dynamically and thermally fully developed of electrically conducting fluid. Both horizontal walls are maintained at constant temperatures higher than that of the fluid. The governing equations in Cartesian coordinate are solved by an implicit finite difference technique. After the flow field and the temperature distributions are obtained, the entropy generation profiles are computed and presented graphically. The factors, which were found to affect the problem under consideration are the magnetic parameter, Eckert number, Prandtl number, and the temperature parameter (θ). It was found that, entropy generation increased as all parameters involved in the present problem increased.  相似文献   

4.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The objective of this study is to investigate diffusion-thermo (Dufour effect) and radiation effects on unsteady MHD free convection flow past an impulsively started infinite vertical plate with variable temperature and uniform mass diffusion in the presence of transverse applied magnetic field through porous medium. At time t > 0, the plate is given an impulsive motion with constant velocity u 0 in the vertical upward direction against to the gravitational field. At the same time, the plate temperature is raised linearly with time t and the level of concentration near the plate is raised to ${{C}_{\rm w}^{\prime}}$ . A magnetic field of uniform strength B 0 is applied normal to the direction to the flow. The dimensionless governing equations are solved in closed form by Laplace transform technique. The effect of flow parameters on velocity, temperature, concentration, the rate of heat transfer and the rate of mass transfer are shown through graphs.  相似文献   

6.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous fluid flow motion due to a porous disk rotating with a constant angular speed. The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions with suction and injection through the surface included. The well-known thinning/thickening flow field effect of the suction/injection is better understood from the exact velocity equations obtained. Making use of this solution, analytical formulas corresponding to the permeable wall shear stresses are extracted.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. As a result, exact formulas are obtained for the temperature field which take different forms depending on whether suction or injection is imposed on the wall. The impacts of several quantities are investigated on the resulting temperature field. In accordance with the Fourier‘s heat law, a constant heat transfer from the porous disk to the fluid takes place. Although the influence of dissipation varies, suction enhances the heat transfer rate as opposed to the injection.  相似文献   

7.
In the present paper the unsteady Couette flow and heat transfer of a dusty conducting fluid between two parallel plates with temperature dependent viscosity and thermal conductivity are studied. A constant pressure gradient and an external uniform magnetic field are applied. The governing coupled momentum and energy equations are solved numerically using finite differences. The effect of the variable viscosity and thermal conductivity of the fluid and the uniform magnetic field on the velocity and temperature fields for both the fluid and dust particles is discussed.  相似文献   

8.
In this paper, the temporal development of small disturbances in a pressure‐driven fluid flow through a channel filled with a saturated porous medium is investigated. The Brinkman flow model is employed in order to obtain the basic flow velocity distribution. Under normal mode assumption, the linearized governing equations for disturbances yield a fourth‐order eigenvalue problem, which reduces to the well‐known Orr–Sommerfeld equation in some limiting cases solved numerically by a spectral collocation technique with expansions in Chebyshev polynomials. The critical Reynolds number Rec, the critical wave number αc, and the critical wave speed cc are obtained for a wide range of the porous medium shape factor parameter S. It is found that a decrease in porous medium permeability has a stabilizing effect on the fluid flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The influence of variation in physical variables on the steady magnetohydrodynamic (MHD) Couette flow with heat transfer is studied. An external uniform magnetic field is applied perpendicular to the parallel plates and the fluid is acted upon by a constant pressure gradient. The viscosity and the thermal as well as electric conductivities are assumed to be temperature dependent. The two plates are kept at two constant but different temperatures, and the viscous and Joule dissipations are considered in the energy equation. A numerical solution for the governing nonlinear coupled equations of motion and the energy equation is obtained. The effect of the temperature-dependent viscosity, thermal conductivity, and electrical conductivity on both the velocity and temperature distributions is examined. H.A. Attia - On leave from: Dept. of Eng. Mathematics and physics, El-Fayoum University, El-Fayoum, Egypt  相似文献   

10.
This paper examines the unsteady two‐dimensional flow of a second‐grade fluid between parallel disks in the presence of an applied magnetic field. The continuity and momentum equations governing the unsteady two‐dimensional flow of a second‐grade fluid are reduced to a single differential equation through similarity transformations. The resulting differential system is computed by a homotopy analysis method. Graphical results are discussed for both suction and blowing cases. In addition, the derived results are compared with the homotopy perturbation solution in a viscous fluid (Math. Probl. Eng., DOI: 10.1155/2009/603916 ). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This paper deals with the study of the laminar free‐convection boundary‐layer flow about a heated and rotating down‐pointing vertical cone in the presence of a transverse magnetic field. Two cases of heat transfer analysis are discussed. These are: (i) the rotating cone with prescribed surface temperature and (ii) the rotating cone with prescribed surface heat flux. By means of similarity transformation, the governing partial differential equations are reduced into highly non‐linear ordinary differential equations. The resulting non‐linear system has been solved analytically using a very efficient technique, namely homotopy analysis method. Expressions for velocity and temperature fields are developed in a series form. The influence of various pertinent parameters is also seen on the velocity and temperature fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, the effects of magnetic field and nanoparticle on the Jeffery-Hamel flow are studied using a powerful analytical method called the Adomian decomposition method (ADM). The traditional Navier-Stokes equation of fluid mechanics and Maxwell’s electromagnetism governing equations are reduced to nonlinear ordinary differential equations to model the problem. The obtained results are well agreed with that of the Runge-Kutta method. The present plots confirm that the method has high accuracy for different α, Ha, and Re numbers. The flow field inside the divergent channel is studied for various values of Hartmann number and angle of channel. The effect of nanoparticle volume fraction in the absence of magnetic field is investigated.  相似文献   

13.
The effects of magnetic field, suction/injection, nanoparticles type, and nanoparticle volume fraction on heat transfer characteristics and mechanical properties of a moving surface embedded into cooling medium consists of water with Cu, Ag or Al2O3 particles are studied. The governing boundary layer equations are transformed to ordinary differential equations containing, suction/injection parameter, magnetic parameter, nanoparticle and volume fraction. These equations are solved analytically. The velocity and temperature profiles within the boundary layer are plotted and discussed in details for various values of the different parameters.  相似文献   

14.
An analysis is presented to investigate the flow and heat transfer characteristics of a vertical stretching surface with suction and blowing, and variable magnetic effects. The magnetic field of variable intensity is applied perpendicular to the surface. The range of the magnetic parameter M investigated is 0.1 to 1.0. The flow is considered steady, incompressible, and three-dimensional. The governing momentum and energy equations are solved numerically. Numerical results are presented for velocity distribution, temperature distribution, surface shear stress, and wall heat transfer rate. Discussion is provided for the effect of the magnetic field strength on the velocity and temperature fields. Received on 26 November 1997  相似文献   

15.
The influence of temperature‐dependent viscosity and magnetic field on the peristaltic flow of an incompressible, viscous Newtonian fluid is investigated. The governing equations are derived under the assumptions of long wavelength approximation. A regular perturbation expansion method is used to obtain the analytical solutions for the velocity and temperature fields. The expressions for the pressure rise, friction force and the relation between the flow rate and pressure gradient are obtain. In addition to analytical solutions, numerical results are also computed and compared with the analytical results with good agreement. The results are plotted for different values of variable viscosity parameter β, Hartmann number M, and amplitude ratio ?. It is found that the pressure rise decreases as the viscosity parameter β increases and it increases as the Hartmann number M increases. Finally, the maximum pressure rise (σ=0) increases as M increases and β decreases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In the present paper, we investigate the generation of thermal stresses in a nonhomogeneous anisotropic solid cylinder rotating about the z-axis at a constant angular velocity in the presence of a magnetic field. The governing equations are solved numerically using the boundary-element method (BEM) and numerical results are obtained for the variation of the temperature, displacements, and stresses along x-axis. The effect of nonhomogeneity is investigated.  相似文献   

17.
The flow of an electrically conducting incompressible viscous fluid in a plane channel with smooth expansion in the presence of a uniform transverse magnetic field has been analysed. A solution technique for the governing magnetohydrodynamic equations in primitive variable formulation has been developed. A co‐ordinate transformation has been employed to map the infinite irregular domain into a finite regular computational domain. The governing equations are discretized using finite‐difference approximations in staggered grid. Pressure Poisson equation and pressure correction formulae are derived and solved numerically. It is found that with increase in the magnetic field, the size of the flow separation zone diminishes and for sufficiently large magnetic field, the separation zone disappears completely. The peak u‐velocity decreases with increase in the magnetic field. It is also found that the asymmetric flow in a symmetric geometry, which occurs at moderate Reynolds numbers, becomes symmetric with sufficient increase in the transverse magnetic field. Thus, a transverse magnetic field of suitable strength has a stabilizing effect in controlling flow separation, as also in delaying the transition to turbulence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
We consider the magnetohydrodynamic flow that is laminar and steady of a viscous, incompressible, and electrically conducting fluid in a semi‐infinite duct under an externally applied magnetic field. The flow is driven by the current produced by a pressure gradient. The applied magnetic field is perpendicular to the semi‐infinite walls that are kept at the same magnetic field value in magnitude but opposite in sign. The wall that connects the two semi‐infinite walls is partly non‐conducting and partly conducting (in the middle). A BEM solution was obtained using a fundamental solution that enables to treat the magnetohydrodynamic equations in coupled form with general wall conductivities. The inhomogeneity in the equations due to the pressure gradient was tackled, obtaining a particular solution, and the BEM was applied with a fundamental solution of coupled homogeneous convection–diffusion type partial differential equations. Constant elements were used for the discretization of the boundaries (y = 0, ?a ? x ? a) and semi‐infinite walls at x = ±a, by keeping them as finite since the boundary integral equations are restricted to these boundaries due to the regularity conditions as y → ∞ . The solution is presented in terms of equivelocity and induced magnetic field contours for several values of Hartmann number (M), conducting length (l), and non‐conducting wall conditions (k). The effect of the parameters on the solution is studied. Flow rates are also calculated for these values of parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the lattice Boltzmann method is used to study the Prandtl number effect on flow structure and heat transfer rates in a magnetohydrodynamic flow mixed convection in a lid‐driven cavity filled with a porous medium. The right and left walls are at constant but different temperatures (θh and θc), while the other walls are adiabatic. Gallium and salt water (0.02 < Pr < 13.4) are used as samples of the electroconducting fluids in the cavity. Typical sets of streamlines and isotherms are presented to analyze the flow patterns set up by the competition among the forced flow created by the lid‐driven wall, the buoyancy force of the fluid and the magnetic force of the applied magnetic field. Mathematical formulations in the porous media were constructed based on the Brinkman–Forchheimer model, while the multidistribution‐function model was used for the magnetic field effect. Numerical results were obtained and the effects of the Prandtl number and the other effective parameters such as Richardson, Hartman, and Darcy numbers were investigated. It was found that the fluid fluctuations within the cavity were reduced by increasing the Hartman number. A similar pattern was observed for the Darcy number reduction. Heat transfer was essentially dominated by the conduction for the low Prandtl number and forced convection dominated as the Prandtl number increased. Also, the average Nusselt number was raised by increasing the Prandtl number. It was discovered that a remarkable heat transfer enhancement of up to 28% could be reached by increasing the Prandtl number (from 0.02 to 13.4) at constant Richardson and Darcy numbers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, flow and heat transfer of a nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved numerically by the fourth order Runge–Kutta integration scheme featuring a shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titanium oxide (TiO2) with water as their base fluid has been considered. The influence of significant parameters such as nanoparticle volume fraction, nanofluids type, magnetic parameter and Reynolds number on the flow and heat transfer characteristics is discussed. It was found that the Nusselt number increases as each of Reynolds number or nanoparticles volume fraction increase, but it decreases as magnetic parameter increase. Also it can be found that choosing copper (for small of magnetic parameter) and alumina (for large values of magnetic parameter) leads to the highest cooling performance for this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号