首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present spectral/hp penalty least‐squares finite element formulation for the numerical solution of unsteady incompressible Navier–Stokes equations. Pressure is eliminated from Navier–Stokes equations using penalty method, and finite element model is developed in terms of velocity, vorticity and dilatation. High‐order element expansions are used to construct discrete form. Unlike other penalty finite element formulations, equal‐order Gauss integration is used for both viscous and penalty terms of the coefficient matrix. For time integration, space–time decoupled schemes are implemented. Second‐order accuracy of the time integration scheme is established using the method of manufactured solution. Numerical results are presented for impulsively started lid‐driven cavity flow at Reynolds number of 5000 and transient flow over a backward‐facing step. The effect of penalty parameter on the accuracy is investigated thoroughly in this paper and results are presented for a range of penalty parameter. Present formulation produces very accurate results for even very low penalty parameters (10–50). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
We present a parameter‐free stable maximum‐entropy method for incompressible Stokes flow. Derived from a least‐biased optimization inspired by information theory, the meshfree maximum‐entropy method appears as an interesting alternative to classical approximation schemes like the finite element method. Especially compared with other meshfree methods, e.g. the moving least‐squares method, it allows for a straightforward imposition of boundary conditions. However, no Eulerian approach has yet been presented for real incompressible flow, encountering the convective and pressure instabilities. In this paper, we exclusively address the pressure instabilities caused by the mixed velocity‐pressure formulation of incompressible Stokes flow. In a preparatory discussion, existing stable and stabilized methods are investigated and evaluated. This is used to develop different approaches towards a stable maximum‐entropy formulation. We show results for two analytical tests, including a presentation of the convergence behavior. As a typical benchmark problem, results are also shown for the leaky lid‐driven cavity. The already presented information‐flux method for convection‐dominated problems in mind, we see this as the last step towards a maximum‐entropy method capable of simulating full incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A new semi‐staggered finite volume method is presented for the solution of the incompressible Navier–Stokes equations on all‐quadrilateral (2D)/hexahedral (3D) meshes. The velocity components are defined at element node points while the pressure term is defined at element centroids. The continuity equation is satisfied exactly within each elements. The checkerboard pressure oscillations are prevented using a special filtering matrix as a preconditioner for the saddle‐point problem resulting from second‐order discretization of the incompressible Navier–Stokes equations. The preconditioned saddle‐point problem is solved using block preconditioners with GMRES solver. In order to achieve higher performance FORTRAN source code is based on highly efficient PETSc and HYPRE libraries. As test cases the 2D/3D lid‐driven cavity flow problem and the 3D flow past array of circular cylinders are solved in order to verify the accuracy of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we present a stress‐based least‐squares finite‐element formulation for the solution of the Navier–Stokes equations governing flows of viscous incompressible fluids. Stress components are introduced as independent variables to make the system first order. Continuity equation becomes an algebraic equation and is eliminated from the system with suitable modifications. The h and p convergence are verified using the exact solution of Kovasznay flow. Steady flow past a large circular cylinder in a channel is solved to test mass conservation. Transient flow over a backward‐facing step problem is solved on several meshes. Results are compared with that obtained using vorticity‐based first‐order formulation for both benchmark problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A fractional step method for the solution of the steady state incompressible Navier–Stokes equations is proposed in this paper in conjunction with a meshless method, named discrete least‐squares meshless (DLSM). The proposed fractional step method is a first‐order accurate scheme, named semi‐incremental fractional step method, which is a general form of the previous first‐order fractional step methods, i.e. non‐incremental and incremental schemes. One of the most important advantages of the proposed scheme is its capability to use large time step sizes for the solution of incompressible Navier–Stokes equations. DLSM method uses moving least‐squares shape functions for function approximation and discrete least‐squares technique for discretization of the governing differential equations and their boundary conditions. As there is no need for a background mesh, the DLSM method can be called a truly meshless method and enjoys symmetric and positive‐definite properties. Several numerical examples are used to demonstrate the ability and the efficiency of the proposed scheme and the discrete least‐squares meshless method. The results are shown to compare favorably with those of the previously published works. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A least‐squares finite element model with spectral/hp approximations was developed for steady, two‐dimensional flows of non‐Newtonian fluids obeying the Carreau–Yasuda constitutive model. The finite element model consists of velocity, pressure, and stress fields as independent variables (hence, called a mixed model). Least‐squares models offer an alternative variational setting to the conventional weak‐form Galerkin models for the Navier–Stokes equations, and no compatibility conditions on the approximation spaces used for the velocity, pressure, and stress fields are necessary when the polynomial order (p) used is sufficiently high (say, p > 3, as determined numerically). Also, the use of the spectral/hp elements in conjunction with the least‐squares formulation with high p alleviates various forms of locking, which often appear in low‐order least‐squares finite element models for incompressible viscous fluids, and accurate results can be obtained with exponential convergence. To verify and validate, benchmark problems of Kovasznay flow, backward‐facing step flow, and lid‐driven square cavity flow are used. Then the effect of different parameters of the Carreau–Yasuda constitutive model on the flow characteristics is studied parametrically. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We prove convergence of the finite element method for the Navier–Stokes equations in which the no‐slip condition and no‐penetration condition on the flow boundary are imposed via a penalty method. This approach has been previously studied for the Stokes problem by Liakos (Weak imposition of boundary conditions in the Stokes problem. Ph.D. Thesis, University of Pittsburgh, 1999). Since, in most realistic applications, inertial effects dominate, it is crucial to extend the validity of the method to the nonlinear Navier–Stokes case. This report includes the analysis of this extension, as well as numerical results validating their analytical counterparts. Specifically, we show that optimal order of convergence can be achieved if the computational boundary follows the real flow boundary exactly. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The analysis and improvement of an immersed boundary method (IBM) for simulating turbulent flows over complex geometries are presented. Direct forcing is employed. It consists in interpolating boundary conditions from the solid body to the Cartesian mesh on which the computation is performed. Lagrange and least squares high‐order interpolations are considered. The direct forcing IBM is implemented in an incompressible finite volume Navier–Stokes solver for direct numerical simulations (DNS) and large eddy simulations (LES) on staggered grids. An algorithm to identify the body and construct the interpolation schemes for arbitrarily complex geometries consisting of triangular elements is presented. A matrix stability analysis of both interpolation schemes demonstrates the superiority of least squares interpolation over Lagrange interpolation in terms of stability. Preservation of time and space accuracy of the original solver is proven with the laminar two‐dimensional Taylor–Couette flow. Finally, practicability of the method for simulating complex flows is demonstrated with the computation of the fully turbulent three‐dimensional flow in an air‐conditioning exhaust pipe. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper studies the application of the continuous sensitivity equation method (CSEM) for the Navier–Stokes equations in the particular case of shape parameters. Boundary conditions for shape parameters involve flow derivatives at the boundary. Thus, accurate flow gradients are critical to the success of the CSEM. A new approach is presented to extract accurate flow derivatives at the boundary. High order Taylor series expansions are used on layered patches in conjunction with a constrained least‐squares procedure to evaluate accurate first and second derivatives of the flow variables at the boundary, required for Dirichlet and Neumann sensitivity boundary conditions. The flow and sensitivity fields are solved using an adaptive finite‐element method. The proposed methodology is first verified on a problem with a closed form solution obtained by the Method of Manufactured Solutions. The ability of the proposed method to provide accurate sensitivity fields for realistic problems is then demonstrated. The flow and sensitivity fields for a NACA 0012 airfoil are used for fast evaluation of the nearby flow over an airfoil of different thickness (NACA 0015). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A new fourth‐order compact formulation for the steady 2‐D incompressible Navier–Stokes equations is presented. The formulation is in the same form of the Navier–Stokes equations such that any numerical method that solve the Navier–Stokes equations can easily be applied to this fourth‐order compact formulation. In particular, in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601 × 601. Using this formulation, the steady 2‐D incompressible flow in a driven cavity is solved up to Reynolds number with Re = 20 000 fourth‐order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A meshfree weak–strong (MWS) form method has been proposed by the authors' group for linear solid mechanics problems based on a combined weak and strong form of governing equations. This paper formulates the MWS method for the incompressible Navier–Stokes equations that is non‐linear in nature. In this method, the meshfree collocation method based on strong form equations is applied to the interior nodes and the nodes on the essential boundaries; the local Petrov–Galerkin weak form is applied only to the nodes on the natural boundaries of the problem domain. The MWS method is then applied to simulate the steady problem of natural convection in an enclosed domain and the unsteady problem of viscous flow around a circular cylinder using both regular and irregular nodal distributions. The simulation results are validated by comparing with those of other numerical methods as well as experimental data. It is demonstrated that the MWS method has very good efficiency and accuracy for fluid flow problems. It works perfectly well for irregular nodes using only local quadrature cells for nodes on the natural boundary, which can be generated without any difficulty. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper considers the streamline‐upwind Petrov–Galerkin (SUPG) method applied to the unsteady compressible Navier–Stokes equations in conservation‐variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, and the second‐order accurate time discretization are presented. The numerical method is discussed in detail. The performance of the algorithm is then investigated by considering inviscid flow past a circular cylinder. Validation of the finite element formulation via comparisons with experimental data for high‐Mach number perfect gas laminar flows is presented, with a specific focus on comparisons with experimentally measured skin friction and convective heat transfer on a 15° compression ramp. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Discontinuous Galerkin (DG) methods are very well suited for the construction of very high‐order approximations of the Euler and Navier–Stokes equations on unstructured and possibly nonconforming grids, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods, a high‐order spectral element DG approximation of the Navier–Stokes equations coupled with a p‐multigrid solution strategy based on a semi‐implicit Runge–Kutta smoother is considered here. The effectiveness of the proposed approach in the solution of compressible shockless flow problems is demonstrated on 2D inviscid and viscous test cases by comparison with both a p‐multigrid scheme with non‐spectral elements and a spectral element DG approach with an implicit time integration scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

18.
A new numerical method that couples the incompressible Navier–Stokes equations with the global mass correction level‐set method for simulating fluid problems with free surfaces and interfaces is presented in this paper. The finite volume method is used to discretize Navier–Stokes equations with the two‐step projection method on a staggered Cartesian grid. The free‐surface flow problem is solved on a fixed grid in which the free surface is captured by the zero level set. Mass conservation is improved significantly by applying a global mass correction scheme, in a novel combination with third‐order essentially non‐oscillatory schemes and a five stage Runge–Kutta method, to accomplish advection and re‐distancing of the level‐set function. The coupled solver is applied to simulate interface change and flow field in four benchmark test cases: (1) shear flow; (2) dam break; (3) travelling and reflection of solitary wave and (4) solitary wave over a submerged object. The computational results are in excellent agreement with theoretical predictions, experimental data and previous numerical simulations using a RANS‐VOF method. The simulations reveal some interesting free‐surface phenomena such as the free‐surface vortices, air entrapment and wave deformation over a submerged object. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the steady incompressible Navier–Stokes equations are discretized by the finite element method. The resulting systems of equations are solved by preconditioned Krylov subspace methods. Some new preconditioning strategies, both algebraic and problem dependent are discussed. We emphasize on the approximation of the Schur complement as used in semi implicit method for pressure‐linked equations‐type preconditioners. In the usual formulation, the Schur complement matrix and updates use scaling with the diagonal of the convection–diffusion matrix. We propose a variant of the SIMPLER preconditioner. Instead of using the diagonal of the convection–diffusion matrix, we scale the Schur complement and updates with the diagonal of the velocity mass matrix. This variant is called modified SIMPLER (MSIMPLER). With the new approximation, we observe a drastic improvement in convergence for large problems. MSIMPLER shows better convergence than the well‐known least‐squares commutator preconditioner which is also based on the diagonal of the velocity mass matrix. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号