首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we present an upwind‐based high resolution scheme using flux limiters. Based on the direction of flow we choose the smoothness parameter in such a way that it leads to a truly upwind scheme without losing total variation diminishing (TVD) property for hyperbolic linear systems where characteristic values can be of either sign. Here we present and justify the choice of smoothness parameters. The numerical flux function of a high resolution scheme is constructed using wave speed splitting so that it results into a scheme that truly respects the physical hyperbolicity property. Bounds are given for limiter functions to satisfy TVD property. The proposed scheme is extended for non‐linear problems by using the framework of relaxation system that converts a non‐linear conservation law into a system of linear convection equations with a non‐linear source term. The characteristic speed of relaxation system is chosen locally on three point stencil of grid. This obtained relaxation system is solved using composite scheme technique, i.e. using a combination of proposed scheme with the conservative non‐standard finite difference scheme. Presented numerical results show higher resolution near discontinuity without introducing spurious oscillations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The resolution of the Saint‐Venant equations for modelling shock phenomena in open‐channel flow by using the second‐order central schemes of Nessyahu and Tadmor (NT) and Kurganov and Tadmor (KT) is presented. The performances of the two schemes that we have extended to the non‐homogeneous case and that of the classical first‐order Lax–Friedrichs (LF) scheme in predicting dam‐break and hydraulic jumps in rectangular open channels are investigated on the basis of different numerical and physical conditions. The efficiency and robustness of the schemes are tested by comparing model results with analytical or experimental solutions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes a central difference scheme for the prediction of flows with an interface. The interface is captured rather than tracked and the key to the current approach is a correction to the hydrostatic pressure. The correction enables the scheme to evaluate pressures at cell faces in a consistent manner so that the source term in the equations is correctly balanced at the interface and on non‐equispaced meshes. This prevents the development of large errors in the solution, which can lead to the divergence of the numerical scheme. The current approach allows interface flows to be calculated by a simple modification of existing central difference codes. Results for a number of test cases are presented, with comparisons made with both experimental data and other numerical solutions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This work investigates high‐order central compact methods for simulating turbulent supersonic flows that include shock waves. Several different types of previously proposed characteristic filters, including total variation diminishing, monotone upstream‐centered scheme for conservation laws, and weighted essentially non‐oscillatory filters, are investigated in this study. Similar to the traditional shock capturing schemes, these filters can eliminate the numerical instability caused by large gradients in flow fields, but they also improve efficiency compared with classical shock‐capturing schemes. Adding the nonlinear dissipation part of a classical shock‐capturing scheme to a central scheme makes the method suitable for incorporation into any existing central‐based high‐order subsonic code. The amount of numerical dissipation to add is sensed by means of the artificial compression method switch. In order to improve the performance of the characteristic filters, we propose a hybrid approach to minimize the dissipation added by the characteristic filter. Through several numerical experiments (including a shock/density wave interaction, a shock/vortex interaction, and a shock/mixing layer interaction) we show that our hybrid approach works better than the original method, and can be used for future turbulent flow simulations that include shocks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper describes the numerical solution of the 1D shallow‐water equations by a finite volume scheme based on the Roe solver. In the first part, the 1D shallow‐water equations are presented. These equations model the free‐surface flows in a river. This set of equations is widely used for applications: dam‐break waves, reservoir emptying, flooding, etc. The main feature of these equations is the presence of a non‐conservative term in the momentum equation in the case of an actual river. In order to apply schemes well adapted to conservative equations, this term is split in two terms: a conservative one which is kept on the left‐hand side of the equation of momentum and the non‐conservative part is introduced as a source term on the right‐hand side. In the second section, we describe the scheme based on a Roe Solver for the homogeneous problem. Next, the numerical treatment of the source term which is the essential point of the numerical modelisation is described. The source term is split in two components: one is upwinded and the other is treated according to a centred discretization. By using this method for the discretization of the source term, one gets the right behaviour for steady flow. Finally, in the last part, the problem of validation is tackled. Most of the numerical tests have been defined for a working group about dam‐break wave simulation. A real dam‐break wave simulation will be shown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
An efficient numerical scheme is outlined for solving the SWEs (shallow water equations) in environmental flow; this scheme includes the addition of a five‐point symmetric total variation diminishing (TVD) term to the corrector step of the standard MacCormack scheme. The paper shows that the discretization of the conservative and non‐conservative forms of the SWEs leads to the same finite difference scheme when the source term is discretized in a certain way. The non‐conservative form is used in the solution outlined herein, since this formulation is simpler and more efficient. The time step is determined adaptively, based on the maximum instantaneous Courant number across the domain. The bed friction is included either explicitly or implicitly in the computational algorithm according to the local water depth. The wetting and drying process is simulated in a manner which complements the use of operator‐splitting and two‐stage numerical schemes. The numerical model was then applied to a hypothetical dam‐break scenario, an experimental dam‐break case and an extreme flooding event over the Toce River valley physical model. The predicted results are free of spurious oscillations for both sub‐ and super‐critical flows, and the predictions compare favourably with the experimental measurements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we present a total variation diminishing (TVD) scheme in the zero relaxation limit for nonlinear hyperbolic conservation law using flux limiters within the framework of a relaxation system that converts a nonlinear conservation law into a system of linear convection equations with nonlinear source terms. We construct a numerical flux for space discretization of the obtained relaxation system and modify the definition of the smoothness parameter depending on the direction of the flow so that the scheme obeys the physical property of hyperbolicity. The advantages of the proposed scheme are that it can give second‐order accuracy everywhere without introducing oscillations for 1‐D problems (at least with) smooth initial condition. Also, the proposed scheme is more efficient as it works for any non‐zero constant value of the flux limiter ? ? [0, 1], where other TVD schemes fail. The resulting scheme is shown to be TVD in the zero relaxation limit for 1‐D scalar equations. Bound for the limiter function is obtained. Numerical results support the theoretical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Numerical oscillation has been an open problem for high‐order numerical methods with increased local degrees of freedom (DOFs). Current strategies mainly follow the limiting projections derived originally for conventional finite volume methods and thus are not able to make full use of the sub‐cell information available in the local high‐order reconstructions. This paper presents a novel algorithm that introduces a nodal value‐based weighted essentially non‐oscillatory limiter for constrained interpolation profile/multi‐moment finite volume method (CIP/MM FVM) (Ii and Xiao, J. Comput. Phys., 222 (2007), 849–871) as an effort to pursue a better suited formulation to implement the limiting projection in schemes with local DOFs. The new scheme, CIP‐CSL‐WENO4 scheme, extends the CIP/MM FVM method by limiting the slope constraint in the interpolation function using the weighted essentially non‐oscillatory (WENO) reconstruction that makes use of the sub‐cell information available from the local DOFs and is built from the point values at the solution points within three neighboring cells, thus resulting a more compact WENO stencil. The proposed WENO limiter matches well the original CIP/MM FVM, which leads to a new scheme of high accuracy, algorithmic simplicity, and computational efficiency. We present the numerical results of benchmark tests for both scalar and Euler conservation laws to manifest the fourth‐order accuracy and oscillation‐suppressing property of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
With the aim of accurately modelling free‐surface flow of two immiscible fluids, this study presents the development of a new volume‐of‐fluid free‐surface capturing formulation. By building on existing volume‐of‐fluid approaches, the new formulation combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume‐of‐fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting the contribution of the artificial compressive term to ensure the integrity of the interface shape is maintained. Furthermore, the computational efficiency of the the higher resolution scheme is improved through the reformulation of the normalised variable approach and the implementation of a new higher resolution blending function. The volume‐of‐fluid equation is discretised via an unstructured vertex‐centred finite volume method and solved via a Jacobian‐type dual time‐stepping approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We propose two‐dimensional central finite volume methods based on our multidimensional extensions of Nessyahu and Tadmor's one‐dimensional non‐oscillatory central scheme and a constrained transport‐type method to solve ideal magnetohydrodynamic problems (MHD) and shallow water magnetohydrodynamic problems (SMHD). The main numerical scheme is second‐order accurate both in space and time and uses an original Cartesian grid coupled to a Cartesian‐ or diamond‐staggered dual grid to by‐pass the resolution of the Riemann problems at the cell interfaces. To treat the non‐vanishing magnetic field/flux divergence we have constructed an adaptation of Evans and Hawley's constrained transport method specifically designed for central schemes. Our numerical results show the efficiency and the potential of the scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we construct and study an exactly well‐balanced positivity‐preserving nonstaggered central scheme for shallow water flows in open channels with irregular geometry and nonflat bottom topography. We introduce a novel discretization of the source term based on hydrostatic reconstruction to obtain the exactly well‐balanced property for the still water steady‐state solution even in the presence of wetting and drying transitions. The positivity‐preserving property of the cross‐sectional wet area is obtained by using a modified “draining" time‐step technique. The current scheme is also Riemann‐solver‐free. Several classical problems of open‐channel flows are used to test these properties. Numerical results confirm that the current scheme is robust, exactly well‐balanced and positivity‐preserving.  相似文献   

12.
The HyFlux2 model has been developed to simulate severe inundation scenario due to dam break, flash flood and tsunami‐wave run‐up. The model solves the conservative form of the two‐dimensional shallow water equations using the finite volume method. The interface flux is computed by a Flux Vector Splitting method for shallow water equations based on a Godunov‐type approach. A second‐order scheme is applied to the water surface level and velocity, providing results with high accuracy and assuring the balance between fluxes and sources also for complex bathymetry and topography. Physical models are included to deal with bottom steps and shorelines. The second‐order scheme together with the shoreline‐tracking method and the implicit source term treatment makes the model well balanced in respect to mass and momentum conservation laws, providing reliable and robust results. The developed model is validated in this paper with a 2D numerical test case and with the Okushiri tsunami run up problem. It is shown that the HyFlux2 model is able to model inundation problems, with a satisfactory prediction of the major flow characteristics such as water depth, water velocity, flood extent, and flood‐wave arrival time. The results provided by the model are of great importance for the risk assessment and management. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier–Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1‐D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion‐based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non‐Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas‐solid flow in a bubbling fluidized bed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a two‐dimensional finite element model for simulating dynamic propagation of weakly dispersive waves. Shallow water equations including extra non‐hydrostatic pressure terms and a depth‐integrated vertical momentum equation are solved with linear distributions assumed in the vertical direction for the non‐hydrostatic pressure and the vertical velocity. The model is developed based on the platform of a finite element model, CCHE2D. A physically bounded upwind scheme for the advection term discretization is developed, and the quasi second‐order differential operators of this scheme result in no oscillation and little numerical diffusion. The depth‐integrated non‐hydrostatic wave model is solved semi‐implicitly: the provisional flow velocity is first implicitly solved using the shallow water equations; the non‐hydrostatic pressure, which is implicitly obtained by ensuring a divergence‐free velocity field, is used to correct the provisional velocity, and finally the depth‐integrated continuity equation is explicitly solved to satisfy global mass conservation. The developed wave model is verified by an analytical solution and validated by laboratory experiments, and the computed results show that the wave model can properly handle linear and nonlinear dispersive waves, wave shoaling, diffraction, refraction and focusing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A semi‐implicit, staggered finite volume technique for non‐hydrostatic, free‐surface flow governed by the incompressible Euler equations is presented that has a proper balance between accuracy, robustness and computing time. The procedure is intended to be used for predicting wave propagation in coastal areas. The splitting of the pressure into hydrostatic and non‐hydrostatic components is utilized. To ease the task of discretization and to enhance the accuracy of the scheme, a vertical boundary‐fitted co‐ordinate system is employed, permitting more resolution near the bottom as well as near the free surface. The issue of the implementation of boundary conditions is addressed. As recently proposed by the present authors, the Keller‐box scheme for accurate approximation of frequency wave dispersion requiring a limited vertical resolution is incorporated. The both locally and globally mass conserved solution is achieved with the aid of a projection method in the discrete sense. An efficient preconditioned Krylov subspace technique to solve the discretized Poisson equation for pressure correction with an unsymmetric matrix is treated. Some numerical experiments to show the accuracy, robustness and efficiency of the proposed method are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume‐integrated average (VIA) for each mesh cell, the surface‐integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi‐Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux‐based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non‐oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This work presents an approximate Riemann solver to the transient isothermal drift ‐ flux model. The set of equations constitutes a non‐linear hyperbolic system of conservation laws in one space dimension. The elements of the Jacobian matrix A are expressed through exact analytical expressions. It is also proposed a simplified form of A considering the square of the gas to liquid sound velocity ratio much lower than one. This approximation aims to express the eigenvalues through simpler algebraic expressions. A numerical method based on the Gudunov's fluxes is proposed employing an upwind and a high order scheme. The Roe linearization is applied to the simplified form of A . The proposed solver is validated against three benchmark solutions and two experimental pipe flow data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This study extends the upstream flux‐splitting finite‐volume (UFF) scheme to shallow water equations with source terms. Coupling the hydrostatic reconstruction method (HRM) with the UFF scheme achieves a resultant numerical scheme that adequately balances flux gradients and source terms. The proposed scheme is validated in three benchmark problems and applied to flood flows in the natural/irregular river with bridge pier obstructions. The results of the simulations are in satisfactory agreement with the available analytical solutions, experimental data and field measurements. Comparisons of the present results with those obtained by the surface gradient method (SGM) demonstrate the superior stability and higher accuracy of the HRM. The stability test results also show that the HRM requires less CPU time (up to 60%) than the SGM. The proposed well‐balanced UFF scheme is accurate, stable and efficient to solve flow problems involving irregular bed topography. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Based on the Bhatnagar–Gross–Krook (BGK) Boltzmann model equation, the unified simplified velocity distribution function equation adapted to various flow regimes can be presented. The reduced velocity distribution functions and the discrete velocity ordinate method are developed and applied to remove the velocity space dependency of the distribution function, and then the distribution function equations will be cast into hyperbolic conservation laws form with non‐linear source terms. Based on the unsteady time‐splitting technique and the non‐oscillatory, containing no free parameters, and dissipative (NND) finite‐difference method, the gas kinetic finite‐difference second‐order scheme is constructed for the computation of the discrete velocity distribution functions. The discrete velocity numerical quadrature methods are developed to evaluate the macroscopic flow parameters at each point in the physical space. As a result, a unified simplified gas kinetic algorithm for the gas dynamical problems from various flow regimes is developed. To test the reliability of the present numerical method, the one‐dimensional shock‐tube problems and the flows past two‐dimensional circular cylinder with various Knudsen numbers are simulated. The computations of the related flows indicate that both high resolution of the flow fields and good qualitative agreement with the theoretical, DSMC and experimental results can be obtained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A robust Godunov‐type numerical scheme solver is proposed for solving 2D SWEs and is applied to simulate flow over complex topography with wetting and drying. In reality, the topography is usually complex and irregular; therefore, to avoid the numerical errors generated by such features, a Homogenous Flux Method is used to handle the bed slope term in the SWEs. The method treats the bed slope term as a flux to be incorporated into the flux gradient and so maintains the balance between the two in a Godunov‐type shock‐capturing scheme. The main advantages of the method are: first, it is simple and easy to implement; second, numerical experiments demonstrate that it can handle discontinuous or vertical bed topography without any special treatment and third, it is applicable to both steady and unsteady flows. It is demonstrated how the approach set out here can be applied to the nonlinear hyperbolic system of the SWEs. The two‐dimensional hyperbolic system is then solved by use of a second‐order total‐variation‐diminishing version of the weighted average flux method in conjunction with a Harten‐Lax‐van Leer‐Contract approximate Riemann solver incorporating the new flux gradient term. Several benchmark tests are presented to validate the model and the approach is verified against experimental measurements from the European Union Concerted Action on Dam Break Modelling project. These show very good agreement. Finally, the method is applied to a volcano‐induced outburst flood over an initially dry channel with complex irregular topography to demonstrate the technique's capability in simulating a real flood. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号