首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An algebraic rate of decay of local energy, nonuniform with respect to the initial data, is established for solutions of the Dirichlet and Neumann problems for the scalar wave equation defined on the exterior V3 of two balls or of two convex bodies. That is, for given initial data f(x)=u(x), 0 and g(x)= u t (x, 0), if u solves u tt in V with either u(x, t)=0 or u n (x,t)+(x) u(x,t,)-0 ((x)0) on V, then there exists a constant T 0, depending upon (f, g), such that the local energy (the energy in any compact set) of u at t=T is bounded from above by QE(0)T –1 for TT 0, where E(0) is the total initial energy of u and Q is a positive constant, independent of u, that depends upon V.  相似文献   

2.
The authors consider the problem of finding u=u(x, t) and p=p(t) which satisfy u = Lu + p(t) + F(x, t, u, x, p(t)) in Q T=Ω×(0, T], u(x, 0)=ø(x), x∈Ω, u(x, t)=g(x, t) on ?Ω×(0, T] and either ∫G(t) Φ(x,t)u(x,t)dx = E(t), 0 ? t ? T or u(x0, t)=E(t), 0≤tT, where Ω?R n is a bounded domain with smooth boundary ?Ω, x 0∈Ω, L is a linear elliptic operator, G(t)?Ω, and F, ø, g, and E are known functions. For each of the two problems stated above, we demonstrate the existence, unicity and continuous dependence upon the data. Some considerations on the numerical solution for these two inverse problems are presented with examples.  相似文献   

3.
Let A cud B satisfy the Structural conditions (2), the local Hölder continuityinterior to Q=G×(0, T) is proved for the generalized solutions of quasilinearparabolic equations as follows: u2 - divA(x, t,u,∇u) + B(x, t, u, ∇u)=0  相似文献   

4.
We study contaminant flow with sources in a fractured porous mediumconsisting of a single fracture bounded by a porous matrix. In the fracturewe assume convection, decay, surface adsorption to the interface, and lossto the porous matrix; in the porous matrix we include diffusion, decay,adsorption, and contaminant sources. The model leads to a nonhomogeneous,linear parabolic equation in a quarter-space with a differential equationfor an oblique boundary condition. Ultimately, we study the problemu t = u yy – u + f(x,y,t),x,y>0, t>0, u t = –u x + u y – u on y = 0; u(0,0,t) =u0(t), t>0,with zero initial data. Using Laplace transforms we obtain the Green'sfunction for the problem, and we determine how contaminant sources in theporous media are propagated in time.  相似文献   

5.
We consider dissipative scalar reaction–diffusion equations that include the ones of the form u tu=f(u(t)), subjected to boundary conditions that include small delays, that is, we consider boundary conditions of the form u/n a=g(u(t), u(tr)). We show the global existence and uniqueness of solutions in a convenient fractional power space, and furthermore, we show that, for r sufficiently small, all bounded solutions are asymptotic to the set of equilibria as t tends to infinity.  相似文献   

6.
Consider the Cauchy problem for a strictly hyperbolic, N × N quasilinear system in one space dimension
ut  +  A(u)ux = 0,        u(0, x) = [`(u)](x),                 (1)u_{t} \, + \, A(u)u_{x} = 0, \qquad u(0, x) = {\bar u}(x), \quad \quad \quad \quad (1)  相似文献   

7.
We consider the equation a(y)uxx+divy(b(y)yu)+c(y)u=g(y, u) in the cylinder (–l,l)×, being elliptic where b(y)>0 and hyperbolic where b(y)<0. We construct self-adjoint realizations in L2() of the operatorAu= (1/a) divy(byu)+(c/a) in the case ofb changing sign. This leads to the abstract problem uxx+Au=g(u), whereA has a spectrum extending to + as well as to –. For l= it is shown that all sufficiently small solutions lie on an infinite-dimensional center manifold and behave like those of a hyperbolic problem. Anx-independent cross-sectional integral E=E(u, ux) is derived showing that all solutions on the center manifold remain bounded forx ±. For finitel, all small solutionsu are close to a solution on the center manifold such that u(x)-(x) Ce -(1-|x|) for allx, whereC and are independent ofu. Hence, the solutions are dominated by hyperbolic properties, except close to the terminal ends {±1}×, where boundary layers of elliptic type appear.  相似文献   

8.
This work is concerned with the rigorous analysis of the effects of small periodic forcing (perturbations) on the dynamical systems which present some interesting phenomena known as delayed bifurcations. We study the dynamical behavior of the system (0.1) $$\begin{gathered} \frac{{\partial u}}{{\partial t}} = f\left( {u, I_i + \varepsilon t} \right) + \varepsilon g\left( {u, I_i + \varepsilon t, \varepsilon , t} \right) \hfill \\ \left. {u\left( t \right)} \right|_{t = 0} = u_0 \left( {I_i } \right) + O\left( \varepsilon \right) \hfill \\ \end{gathered} $$ whereu 0(I) is the solution off(u 0(I), I)=0 andI(t)=I i+εt is a slowly varying parameter that moves past a critical pointI_ of the system so that the linear stability aroundu 0(I) changes from stable to unstable atI_. General results are given with respect to the effects of the perturbation εg(u,I(t),ε, t) to several important types of dynamical systems (0.2) $$\frac{{\partial u}}{{\partial t}} = f\left( {u,I_i + \varepsilon t} \right)$$ which present dynamical patterns that there exist persistent unstable solutions in the dynamical systems (delayed bifurcations) in contrast to bifurcations in the classical sense. It is shown that (1) the delayed bifurcations persist if the frequency ofg(…,…,…,t) ont is a constantΩ which is not a resonant frequency; (2) in case the frequency ofg(…,…,…,t) ont isΩ=Ω(I i+εt) that is slowly varying, the resonance frequencies where the delayed bifurcations might be destructed are shifted downward or upward depending onΩ′(I_)>0 orΩ′(I_)<0; and (3) delayed pitchfork (simple eigenvalue) bifurcations occur in a codimension one parameter family of periodic perturbations. (1) is a rigorous analysis of the results in [3], (2) is a new and interesting phenomenon, and (3) is a generalization of the results of Diener [8] and Schecter [19].  相似文献   

9.
It is shown that for scalar dissipative delay-diffusion equationsu tu=f(u(t),u(t–)) with a small delay, all solutions are asymptotic to the set of equilibria ast tends to infinity.  相似文献   

10.
The paper is concerned with the asymptotic behavior as t → ∞ of solutions u(x, t) of the equation ut—uxx—∞;(u)=O, x∈(—∞, ∞) , in the case ∞(0)=∞(1)=0, ∞′(0)<0, ∞′(1)<0. Commonly, a travelling front solution u=U(x-ct), U(-∞)=0, U(∞)=1, exists. The following types of global stability results for fronts and various combinations of them will be given.
  1. Let u(x, 0)=u 0(x) satisfy 0≦u 0≦1. Let \(a\_ = \mathop {\lim \sup u0}\limits_{x \to - \infty } {\text{(}}x{\text{), }}\mathop {\lim \inf u0}\limits_{x \to \infty } {\text{(}}x{\text{)}}\) . Then u approaches a translate of U uniformly in x and exponentially in time, if a? is not too far from 0, and a+ not too far from 1.
  2. Suppose \(\int\limits_{\text{0}}^{\text{1}} {f{\text{(}}u{\text{)}}du} > {\text{0}}\) . If a ? and a + are not too far from 0, but u0 exceeds a certain threshold level for a sufficiently large x-interval, then u approaches a pair of diverging travelling fronts.
  3. Under certain circumstances, u approaches a “stacked” combination of wave fronts, with differing ranges.
  相似文献   

11.
We prove the existence of a global semigroup for conservative solutions of the nonlinear variational wave equation u tt c(u)(c(u)u x ) x  = 0. We allow for initial data u| t = 0 and u t | t=0 that contain measures. We assume that 0 < k-1 \leqq c(u) \leqq k{0 < \kappa^{-1} \leqq c(u) \leqq \kappa}. Solutions of this equation may experience concentration of the energy density (ut2+c(u)2ux2)dx{(u_t^2+c(u)^2u_x^2){\rm d}x} into sets of measure zero. The solution is constructed by introducing new variables related to the characteristics, whereby singularities in the energy density become manageable. Furthermore, we prove that the energy may focus only on a set of times of zero measure or at points where c′(u) vanishes. A new numerical method for constructing conservative solutions is provided and illustrated with examples.  相似文献   

12.
Entropy Solutions for Nonlinear Degenerate Problems   总被引:9,自引:0,他引:9  
We consider a class of elliptic-hyperbolic degenerate equations g(u)-Db(u) +\divgf(u) = fg(u)-\Delta b(u) +\divg\phi (u) =f with Dirichlet homogeneous boundary conditions and a class of elliptic-parabolic-hyperbolic degenerate equations g(u)t-Db(u) +\divgf(u) = fg(u)_t-\Delta b(u) +\divg\phi (u) =f with homogeneous Dirichlet conditions and initial conditions. Existence of entropy solutions for both problems is proved for nondecreasing continuous functions g and b vanishing at zero and for a continuous vectorial function J satisfying rather general conditions. Comparison and uniqueness of entropy solutions are proved for g and b continuous and nondecreasing and for J continuous.  相似文献   

13.
We prove that any bounded solution (u, u 1) ofu u +du t –u+f(u)=0,u=u(x, t), xN,N3, converges to a fixed stationary state provided its initial energy is appropriately small. The theory of concentrated compactness is used in combination with some recent results concerning the uniqueness of the so-called ground-state solution of the corresponding stationary problem.  相似文献   

14.
We consider the Cauchy problem for a strictly hyperbolic, N × N quasilinear system in one-space dimension
where , is a smooth matrix-valued map and the initial data is assumed to have small total variation. We present a front tracking algorithm that generates piecewise constant approximate solutions converging in to the vanishing viscosity solution of (1), which, by the results in [6], is the unique limit of solutions to the (artificial) viscous parabolic approximation
as . In the conservative case where A(u) is the Jacobian matrix of some flux function F(u) with values in , the limit of front tracking approximations provides a weak solution of the system of conservation laws u t + F(u) x = 0, satisfying the Liu admissibility conditions. These results are achieved under the only assumption of strict hyperbolicity of the matrices A(u), . In particular, our construction applies to general, strictly hyperbolic systems of conservation laws with characteristic fields that do not satisfy the standard conditions of genuine nonlinearity or of linear degeneracy in the sense of Lax[17], or in the generalized sense of Liu[23]. Dedicated to Prof. Tai Ping Liu on the occasion of his 60 th birthday  相似文献   

15.
We study the dynamics of pattern formation in the one-dimensional partial differential equation $$u_u - (W'(u_x ))_x - u_{xxt} + u = 0{\text{ (}}u = u(x,t),{\text{ }}x \in (0,1),{\text{ }}t > 0)$$ proposed recently by Ball, Holmes, James, Pego & Swart [BHJPS] as a mathematical “cartoon” for the dynamic formation of microstructures observed in various crystalline solids. Here W is a double-well potential like 1/4((u x )2 ?1)2. What makes this equation interesting and unusual is that it possesses as a Lyapunov function a free energy (consisting of kinetic energy plus a nonconvex “elastic” energy, but no interfacial energy contribution) which does not attain a minimum but favours the formation of finer and finer phase mixtures: $$E[u,u_t ] = \int\limits_0^1 {(\frac{{u_t^2 }}{2} + W(u_x ) + \frac{{u^2 }}{2})dx.}$$ Our analysis of the dynamics confirms the following surprising and striking difference between statics and dynamics, conjectured in [BHJPS] on the basis of numerical simulations of Swart & Holmes [SH]:
  • ?While minimizing the above energy predicts infinitely fine patterns (mathematically: weak but not strong convergence of all minimizing sequences (u nvn) of E[u,v] in the Sobolev space W 1 p(0, 1)×L2(0,1)), solutions to the evolution equation of ball et al. typically develop patterns of small but finite length scale (mathematically: strong convergence in W 1 p(0,1)×L2(0,1) of all solutions (u(t),ut(t)) with low initial energy as time t → ∞).
  • Moreover, in order to understand the finer details of why the dynamics fails to mimic the behaviour of minimizing sequences and how solutions select their limiting pattern, we present a detailed analysis of the evolution of a restricted class of initial data — those where the strain field u x has a transition layer structure; our analysis includes proofs that
  • ?at low energy, the number of phases is in fact exactly preserved, that is, there is no nucleation or coarsening
  • ?transition layers lock in and steepen exponentially fast, converging to discontinuous stationary sharp interfaces as time t → ∞
  • ?the limiting patterns — while not minimizing energy globally — are ‘relative minimizers’ in the weak sense of the calculus of variations, that is, minimizers among all patterns which share the same strain interface positions.
  •   相似文献   

    16.
    Under constant uniaxial tensile load continuous damage parameter for non-ageingbrittle materials may be expressed asω(p/A_0)=g(p/A_0)+f_1(P/A_0)f_2(t)The determination of the expression for g(P/A_0) had been pointed out by[4].But howto determine the expressions for f_1(P/A_0)andf_2(t),the solution to this problem is notyet in sight.Now the solution to this problem is given by the present paper.This paper pointsout f_1(P/A_0)f_2(t)=Φ(P/A_0)t and the method of the determination of the expressionfor Φ(P/A_0).  相似文献   

    17.
    In this paper we consider the asymptotic behavior of solutions of the quasilinear equation of filtration as t. We prove that similar solutions of the equation u t = (u )xx asymptotically represent solutions of the Cauchy problem for the full equation u t = [(u)]xx if (u) is close to u for small u.  相似文献   

    18.
    This paper develops, with an eye on the numerical applications, an analogue of the classical Euler-Cauchy polygon method (which is used in the solution of the ordinary differential equation dy/dx=f(x, y), y(x 0)=y 0) for the solution of the following characteristic boundary value problem for a hyperbolic partial differential equation u xy =f(x, y, u, u x , y y ), u(x, y 0)=(x), u(x 0, y)=(y), where (x 0)=(y 0). The method presented here, which may be roughly described as a process of bilinear interpolation, has the advantage over previously proposed methods that only the tabulated values of the given functions (x) and (y) are required for its numerical application. Particular attention is devoted to the proof that a certain sequence of approximating functions, constructed in a specified way, actually converges to a solution of the boundary value problem under consideration. Known existence theorems are thus proved by a process which can actually be employed in numerical computation.
      相似文献   

    19.
    The existence and uniqueness of a solution to the nonstationary Navier–Stokes system having a prescribed flux in an infinite cylinder is proved. We assume that the initial data and the external forces do not depend on x3 and find the solution (u, p) having the following form
    where x′  =  (x1, x2). Such solution generalize the nonstationary Poiseuille solutions.  相似文献   

    20.
    In this paper, a class of three level explicit schemes for a dispersive equation ut=auxxx with stability condition |r|=|α|Δt/(Δx)3≤2.382484, are considered. The stability condition for this class of schemes is much better than |r|≤0.3849 in [1], [2] and |r|≤0.701659 in [3], and |r|≤1.1851 in [4].  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号