首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper deals with optimal shapes against buckling of an elastic nonlocal small-scale Pflüger beams with Eringen’s model for constitutive bending curvature relationship. By use of the Pontryagin’s maximum principle the optimality condition in form of a depressed quartic equation is obtained. The shape of the lightest (having the smallest volume) simply supported beam that will support given uniformly distributed follower type of load and axial compressive force of constant intensity without buckling, is determined numerically. A special attention is paid to the influence of the characteristic small length scale parameter of the nonlocal constitutive law to both critical load and optimal shape of the analyzed beams. For the case when distributed follower type of load is zero, our results reduce to those obtained recently for compressed nonlocal beam. Also the post buckling shape of the optimally shaped rod is studied numerically.  相似文献   

2.
采用谱单元方法推导带阻尼梁的传递函数矩阵. 采用一维连续梁的解析解作为动力形状函 数. 与有限元法相比,谱单元方法的自由度和单元数目小且计算精度高. 传递函数表示为梁 的几何和物理参数的超越隐函数,不同于用模态参数表示的传统传递函数. 提出了采用遗传 算法的结构物理参数识别方法. 以变截面悬臂梁为数值算例,显示该方法的有效性.  相似文献   

3.
Based on a non-linear mathematical model of lateral buckling of a slender beam with a narrow rectangular cross section, the variational formulation of the two-parametric optimization problem is given in the dimensionless form. An optimal shape is obtained by solving the variational problem using the Rayleigh–Ritz method with the orthogonal system of trigonometric functions. By a partial solution of the Euler–Lagrange differential equation of the variational problem, a proof is given that in the case of the optimal shape, a maximal reference stress according to the total strain energy theory is constant along the beam. An example of extrapolation of the two-parametric optimization problem solution is represented.  相似文献   

4.
The problem of optimal design of a transversely layered cantilever beam of minimum mass composed of a finite set of elastic homogeneous isotropic materials is considered for the case where a constraint is imposed on the maximum deflection of the beam and information on the loads applied to the beam is incomplete. It is shown that, among these loads, there exists the “worst” point load whose magnitude is equal to the resultant of the forces applied to the beam, for which the deflection is maximal for any material distribution along the beam. The necessary optimality conditions are obtained for the mass-minimization problem of the beam under the “worst” loading, a numerical algorithm is developed for the synthesis of the optimal cantilever, and a numerical example is given. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 104–110, July–August, 2007.  相似文献   

5.
The paper considers the problem of optimization of mechanical systems described by partial differential equations. The shape of the region of integration of these equations is not specified beforehand but is to determined from the condition that a certain integral functional attains an extremal value. The mathematical optimization problem is reduced to a variational one having no differential constraints and the necessary optimality conditions are derived. The latter are used for seeking the cross-sectional shape of elastic bars of maximum torsional rigidity. Exact and approximate analytical solutions are given and the effectiveness of the optimal solutions is estimated.  相似文献   

6.
优化设计中梁截面参数间函数关系的形状乘子法   总被引:2,自引:0,他引:2  
提出了处理优化设计中梁截面参数间函数关系的形状乘子法。这种方法可以适用于各种复杂的梁截面,并且灵活地运用在含有梁截面的优化设计中。利用这种方法可以使含梁结构的优化更广泛地运用到工程实际问题中。  相似文献   

7.
In this paper, we analyze a metal honeycomb sandwich beam/torsion bar subjected to combined loading conditions. The cell wall arrangement of the honeycomb core is addressed in the context of maximizing resistance to either bending, torsion, or combined bending and torsion for given dimensions, face sheet thicknesses and core relative density. It is found that the relative contributions of the honeycomb core to torsion and bending resistances are sensitive to the configuration of cell walls and the optimal properties significantly exceed those of stochastic metallic foams as sandwich beam core materials for this configuration.  相似文献   

8.
Photostrictive materials produce mechanical strain when irradiated by ultraviolet light, thus may be used in wireless remote control of smart microstructures. This paper presents an investigation into modelling and static shape control of beams with nonlinear photostrictive actuators. Governing equations of beams bonded with photostrictive actuator patches are derived to study the interaction between the photostrictive actuators and the host beams. An analytical solution method is presented to solve the governing equations of the beams with discretely distributed photostrictive actuators. An iterative procedure is developed to find optimal light intensities in photostrictive actuators that best match the actuated shape to the desired one. An example is given to illustrate the model and shape control of a beam with PLZT actuators.  相似文献   

9.
For a specific fiber-net, the design variables are relative fiber density and fiber orientations. With a given amount of fibers, our objective is to maximize the stiffness (minimize the compliance) for a continuum subjected to a given load situation. Analytical optimality criteria are derived, and numerical optimization procedures are presented. Applications to a wedge problem from the literature, Royer-Carfagni (2000), and to a skew plate problem are shown, and the study includes the influence of a basic material to be reinforced. The procedure described can be combined with localized optimal design for density, orientation, and shape, “pointwise” or for design regions.  相似文献   

10.
An analytical model is developed for the response of clamped monolithic and sandwich beams subjected to impulse loading over a central loading patch. A number of topologies of sandwich core are investigated, including the honeycomb core, pyramidal core, prismatic diamond core and metal foam. The various cores are characterised by their dependencies of through-thickness compressive strength and longitudinal tensile strength upon relative density. Closed-form expressions are derived for the deflection of the beam when the ratio r of length of loading patch to the beam span exceeds 0.5. In contrast, an ordinary differential equation needs to be solved numerically for the choice r<0.5. Explicit finite element calculations show that most practical shock loadings can be treated as impulsive and the accuracy of the impulsive analytical predictions is confirmed. The analytical formulae are employed to determine optimal geometries of the sandwich beams that maximise the shock resistance of the beams for a given mass. The optimisation reveals that sandwich beams have a superior shock resistance relative to monolithic beams of the same mass, with the prismatic diamond core sandwich beam providing the best performance. Further, the optimal sandwich beam designs are only mildly sensitive to the length of the loading patch.  相似文献   

11.
The shape of the normally striking impactor that attains the maximum depth of penetration into a concrete or a limestone semi-infinite target for a given impact velocity is found. It is shown that the optimum shape is close to a blunt (in general case) cone and it is independent on the properties of the material of the target in the framework of the employed penetration model. The performance of some other typical shapes of the nose of the impactors (spherical-conic impactors, sharp-conic impactors, truncated-ogive impactors) are analyzed and compared with the optimal impactor.  相似文献   

12.
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA’s strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA’s energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.  相似文献   

13.
14.
Formulations of variational problems on maximum lift-drag ratio lifting shapes are considered for different sets of isoperimetric conditions. The problem with a differential constraint setting a lower limit on the local slope of the leading edge of the waverider and simulating either the maximum heat flux to the leading edge or the contribution of the force acting on the leading edge to a particular component of the aerodynamic force is considered. Solutions of the problem of the optimal shape of a waverider constructed on plane shocks are derived for given lift coefficient and specific volume, both with and without constraints on the waverider dimensions.  相似文献   

15.
弹性连接旋转柔性梁动力学分析   总被引:2,自引:0,他引:2  
黄意新  田浩  赵阳 《力学学报》2016,48(4):963-971
采用Chebyshev 谱方法对考虑根部连接弹性的平面内旋转柔性梁动力学特性进行研究. 基于Gauss-Lobatto 节点与Chebyshev 多项式方法对柔性梁变形场进行离散,通过投影矩阵法施加固定及弹性连接边界条件. 利用Chebyshev 谱方法获得了系统固有频率和模态振型数值解,通过与有限元方法及加权残余法的比较,验证了方法的有效性. 分析了弹性连接刚度、角速度比率、系统径长比及梁的长细比等参数对系统固有频率及模态振型的影响. 研究发现:由于系统弯曲模态、拉伸模态的频率随各参数的变化规律不一致,将出现频率转向与振型转换现象;随着弹性连接刚度、角速度比率及系统径长比的增大,低阶弯曲模态频率增大并超过高阶拉伸模态频率,随着梁的长细比的增大,低阶拉伸模态频率增大并超过高阶弯曲模态频率.   相似文献   

16.
航空航天等领域对结构形状要求非常严格,利用压电材料的逆压电效应控制结构变形是现代空间结构形状控制中一个很好的选择。本文基于一般曲梁单元,推导了空间压电曲梁单元的方程表达式,主体壳结构与压电单元之间利用约束方程连接。在此基础上进一步采用最小二乘法得到了压电控制单元上的最优电压,实现了压电曲梁单元的变形控制。数值算例表明了...  相似文献   

17.
A spectral finite element method is proposed to investigate the stochastic response of an axially loaded composite Timoshenko beam with solid or thin-walled closed section exhibiting bending–torsion materially coupling under the stochastic excitations with stationary and ergodic properties. The effects of axial force, shear deformation (SD) and rotary inertia (RI) as well as bending–torsion coupling are considered in the present study. First, the damped general governing differential equations of motion of an axially loaded composite Timoshenko beam are derived. Then, the spectral finite element formulation is developed in the frequency domain using the dynamic shape functions based on the exact solutions of the governing equations in undamped free vibration, which is used to compute the mean square displacement response of axially loaded composite Timoshenko beams. Finally, the proposed method is illustrated by its application to a specific example to investigate the effects of bending–torsion coupling, axial force, SD and RI on the stochastic response of the composite beam.  相似文献   

18.
Experimental results are presented of the power spectral density of the random bending strain on the surface of a beam obtained using a scanning laser vibrometer. The strain spectra were obtained by processing vibration data measured at discrete locations along the beam's length. The beam was driven by a stationary broad-band random force. The experimental setup is described along with the data analysis procedure. The results presented here indicate that the method is practical and can lead to reliable estimates.  相似文献   

19.
In this study, stability and bimodal optimization of clamped beam elastically restrained against translation on one end subjected to a constant axially load are analyzed. The beam is positioned on elastic Winkler type foundation. The Euler method of adjacent equilibrium configuration is used in deriving the nonlinear governing equations. The critical load parameters, axial force and stiffness of foundation, are obtained for beam with the unit cross-sectional area.The shape of the beam stable against buckling that has minimal volume is determined by using Pontryagin’s maximum principle. The optimality conditions for the case of bimodal optimization are derived. The cross-sectional area for optimally designed beam is found from the solution of a nonlinear boundary value problem. New numerical results are obtained. A first integral (Hamiltonian) is used to monitor accuracy of integration. It is shown that there is the saving in material for the same buckling force.  相似文献   

20.
The compressive strength of unidirectional long fibre composites is predicted for plastic microbuckling from a random two-dimensional distribution of fibre waviness. The effect of the physical size of waviness is addressed by using couple stress theory, with the fibre bending resistance scaling with the fibre diameter d. The predicted statistical distribution of compressive strength is found using a Monte Carlo method. An ensemble of fibre waviness profiles is generated from an assumed spectral density of waviness and the compressive strength for each such realisation is calculated directly by the finite element method. The average predicted strength agrees reasonably with practical values, confirming the hypothesis that microbuckles can be initiated by fibre misalignment. It is found that the probability distribution of strength is well matched by a Weibull fit, and the dependence of the Weibull parameters upon the spectral density of waviness is determined. For the practical range of fibre distributions considered, it is concluded that the strength depends mainly upon the root mean square amplitude of fibre misalignment, with the shape of the power spectral density function playing only a minor role. An engineering model for predicting the compressive strength is proposed, akin to weakest link theory for materials containing flaws. A specimen containing randomly distributed waviness is examined to locate regions of high-fibre misalignment. The strength of each of these weak regions is estimated from a look-up table derived from calculations with idealised circular or elliptical patches of waviness. The strength of the composite is given by the failure stress associated with the weakest such patch. For random distributions of waviness, the predictions using this engineering approach are in good agreement with the direct calculations of strength using the finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号