首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Lippm.  H 寇绍全 《力学进展》1990,20(4):452-467
本文总结了慕尼黑工业大学关于煤矿中突出问题的研究。首先,指出了易发生突出的材料的一个主要力学特征,是材料参数在破坏后效区快速下降。接着,将简化弹塑性理论(或称初等理论)应用于研究突出,揭示了突出的某些基本机理。还详细讨论了临近巷道存在坍塌及考虑煤层内部剪应力时对突出的影响。最后给出了把坍塌形成当作突出处理以及把煤层顶底板岩石当作弹性体考虑的结果。将理论结果与现场现象进行了对比,并对预报及防止突出的方法用力学观点给予了解释。  相似文献   

2.
预估在非比例加载下薄金属板成型极限的损伤基力学模型   总被引:1,自引:0,他引:1  
探讨了用损伤基力学模型研究应变路径对薄金属板塑性失稳的影响,这种力学模型考虑了材料损伤作用.基于这种模型,在等效应变空问建立了考虑损伤的塑性失稳判据,并用以预估在比例或非比例加载下薄金属板成型极限曲线(FLC).借助这种理论模型和方法,预估薄金属板的理论成型极限曲线与Graf和Hosford的实验结果一致。  相似文献   

3.
统计细观损伤力学和损伤演化诱致突变   总被引:42,自引:1,他引:41  
材料的损伤和破坏是固体力学中一个十分复杂的基本问题,近年来在这方面的研究从不同的角度取得一系列新的进展。本文较系统地介绍了统计细观损伤力学和损伤演化诱致突变理论,这是把力学与统计物理学及非线性科学结合起来研究材料损伤和破坏问题的一种探索。   相似文献   

4.
金属材料计算微观力学网格自动生成   总被引:2,自引:0,他引:2  
金属材料微观结构形态不仅在材料科学中具有重要研究意义,而且也是微、细观力学分析,特别是计算微观力学的研究内容。本文依据冶金物理学理论基础,简化材料微结构形成过程,把数学和几何学结合起来,提出了“随机投放,逐点扫描”构造材料微结构形态的方法,并将此方法的仿真结果进行统计分析,用材料物理概念予以检验,表明仿真结果不丢失晶粒形状、晶粒度等主要统计特征,与真实材料的微结构有良好的一致性。  相似文献   

5.
基于Steigmann-Ogden(S-O)表面理论,研究了圆柱形微纳米材料在轴向对压荷载作用下的力学性能。利用级数展开求解材料内部的弹性控制方程,获得了考虑表面效应时的域内解析表达式。当所得结果忽略表面弯曲参数时可退化为Gurtin-Murdoch(G-M)表面模型。用文献中有限元数值结果对本理论进行退化验证,结果得到良好一致性。在此基础上,讨论了表面弯曲参数和圆柱尺寸大小对材料特性的影响。结果显示:考虑了表面弯曲效应的S-O模型和G-M模型在应力分布中有很大的不同。另外,随着圆柱尺寸的减小,其表面效应对材料的力学特性的影响逐渐增大。  相似文献   

6.
双模量扁壳在均匀内压作用下,会形成拉压弹性模量不同的各向同性拉伸区和压缩区,把双模量扁壳看成两种材料组成的层合扁壳,采用板壳理论求得了双模量扁壳在均匀内压作用下中性面位置;推导出了双模量扁壳挠度与均匀内压的关系式,并把该方法的计算结果与有限元方法计算结果进行了比较,验证了该计算方法的可靠性。算例分析表明,当拉压弹性模量相差较大时,将双模量材料当作单模量材料计算,其误差绝对值最小值为24.4%,误差绝对值最大值为35.38%。因此,均匀内压作用下双模量简支扁壳的大挠度弯曲计算必须考虑双模量材料拉压弹性模量不同的特性。  相似文献   

7.
统计细观损伤力学和损伤演化诱致突变(Ⅱ)   总被引:12,自引:1,他引:12  
材料的损伤和破坏是固体力学中一个十分复杂的基本问题,近年来在这方面的研究从不同的角度取得一系列新的进展。本文较系统地介绍了统计细观损伤力学和损伤演化诱致突变理论,这是把力学与统计物理学及非线性科学结合起来研究材料损伤和破坏问题的一种探索。  相似文献   

8.
煤层底板突水预测的理论判据及其应用   总被引:2,自引:0,他引:2  
本文采用弹塑性力学理论对采煤工作面底板岩层进行了研究,提出了煤层底板突水的预测公式,经过对111个带压开采工作面实例验算,效果较好,从而基本上解决了煤层底板突水的预测问题.  相似文献   

9.
统计细观损伤力学和损伤演化诱致突变(Ⅱ)   总被引:19,自引:0,他引:19  
夏蒙棼  韩闻生 《力学进展》1995,25(2):145-173
材料的损伤和破坏是固体力学中一个十分复杂的基本问题,近年来在这方面的研究从不同的角度取得一系列新的进展。本文较系统地介绍了统计细观损伤力学和损伤演化诱致突变理论,这是把力学与统计物理学及非线性科学结合起来研究材料损伤和破坏问题的一种探索。  相似文献   

10.
统计细观损伤力学和损伤演化诱致突变   总被引:20,自引:1,他引:20  
材料的损伤和破坏是固体力学中一个十分复杂的基本问题,近年来在这方面的研究从不同的角度取得一系列新的进展。本文较系统地介绍了统计细观损伤力学和损伤演化诱致突变理论,这是把力学与统计物理学及非线性科学结合起来研究材料损伤和破坏问题的一种探索。  相似文献   

11.
Adaptive shock control bumps can exploit the on-design drag-reducing potential of 2D bumps, while mitigating their off-design performance deterioration through geometric modifications. In this study, experiments and simulations have been employed to investigate the wave-drag reducing potential of (actuated and unconstrained) 2D adaptive shock control bumps over a wide range of shock positions. Experiments were carried out in the Imperial College supersonic wind tunnel, modelling the adaptive bump as a flexible surface placed beneath a Mach 1.4 shock wave. 2D RANS CFD simulations of the flow in a parallel channel with a solid bump complement experiments. Wave drag was demonstrated to be proportional to the ratio of inlet to exit stagnation pressure in a blow-down wind tunnel for a given shock position. The shock exhibits a hysteretic behaviour when travelling in the wind tunnel working section, governed by the wave drag reducing potential of the bump. The actuated adaptive bump tested reduces wave drag over a wider operational envelope than solid bumps as experiments revealed the presence of three preferred structural configurations, which lead to a significantly enlarged hysteresis region. Finally, tests on unconstrained bumps were shown to increase wave drag, both on- and off-design, due to the unfavourable bump shapes that result from (only) passive actuation, suggesting that some constraints are required to achieve desirable surface deformations.  相似文献   

12.
为了考察应用图案化盘片实现超高密度磁存储时磁头/磁盘界面气体润滑设计理论的有效性,本文设计了1种三维凸台轴承构型,分别使用直接模拟蒙特卡罗方法(DSMC)和气体分子薄膜润滑理论(MGL)方法进行了模拟计算,考察了相对滑动速度、轴承最小间隙、凸台高度和入射速度方向对气体轴承压力分布的影响.结果表明:对于三维凸台微尺度气体轴承,MGL方法的计算结果依然与DSMC方法的结果相差不大.存在凸台接触,轴承间隙为零的情况下,气体轴承仍然具有一定的承载能力,且压力分布形状随凸台高度的变化表现出与常规非接触式气体轴承不同的规律.  相似文献   

13.
This paper studies the unstable mechanisms of the mechanical system that is composed of the stiff hosts (roof and floor) and the coal pillar using catastrophe theory. It is assumed that the roof is an elastic beam and the coal pillar is a strain-softening medium which can be described by the Weibull’s distribution theory of strength. It is found that the instability leading to coal bump depends mainly on the system’s stiffness ratio k, which is defined as the ratio of the flexural stiffness of the beam to the absolute value of the stiffness at the turning point of the constitutive curve of the coal pillar, and the homogeneity index m or shape parameter of the Weibull’s distribution for the coal pillar. The applicability of the cusp catastrophe is demonstrated by applying the equations to the Mentougou coal mine. A nonlinear dynamical model, which is derived by considering the time-dependent property of the coal pillar, is used to study the physical prediction of coal bumps. An algorithm of inversion for determining the parameters of the nonlinear dynamical model is suggested for seeking the precursory abnormality from the observed series of roof settlement. A case study of the Muchengjian coal mine is conducted and its nonlinear dynamical model is established from the observation series using the algorithm of inversion. An important finding is that the catastrophic characteristic index D (i.e., the bifurcation set of the cusp catastrophe model) drastically increases to a high peak value and then quickly drops close to instability. From the viewpoint of damage mechanics of coal pillar, a dynamical model of acoustic emission (AE) is established for modeling the AE activities in the evolutionary process of the system. It is revealed that the values of m and the evolutionary path (D = 0 or D ≠ 0) of the system have a great impact on the AE activity patterns and characters.  相似文献   

14.
Considering the adhesive effect and geometric nonlinearity, the adhesive contactbetween an elastic substrate and a clamped miniature circular plate with two different centralrigid bumps under the action of uniform transverse pressure and in-plane tensile force in theradial direction was analyzed. And an analytical solution is presented by using the perturbationmethod. The relation of surface adhesive energies with critical load to detach the contacted surfacesis obtained. In the numerical results, the effects of adhesive energy, in-plane tensile force, rigidbump size and contact radius on the critical load are discussed, and the relation of critical contactradius with the gap between the central rigid bump and the substrate for different adhesive energiesis investigated.  相似文献   

15.
H. Yan  D. Gaitonde 《Shock Waves》2011,21(5):411-423
A three-dimensional numerical study is performed to explore the effect of pulsed spanwise-periodic surface thermal perturbation (also denoted as thermal bump) in a Mach 1.5 flat plate laminar boundary layer. A high-resolution upwind-biased Roe method is used with the compressive Van Leer harmonic limiter on a suitably refined mesh. The dependence of flow stability characteristics on the variation of thermal bump geometry (shape and dimension) and pulsing properties (disturbance amplitude and frequency) is assessed. It is shown that the finite-span thermal bumps generate streamwise vortices. When the thermal bump is pulsed, vortex shedding is observed, and the streamwise vorticity grows with the downstream distance. Analysis of the integrated disturbance energy indicates that the streamwise kinetic disturbance energy dominates over those associated with other two velocity and thermodynamic components. Immediately downstream of the bump, the dominant frequency corresponds to that of the imposed excitation while higher harmonic components are observed farther downstream. An analysis of parametric variation of bump shape and dimension indicates that finite bump span is important in injecting three dimensionality and that the rectangular shape results in faster disturbance growth than the circular one. The study also concludes that disturbance growth is non-linear with bump temperature and has a strong connection with pulsing frequency.  相似文献   

16.
Transport in porous media with chemical and thermal effects is a common phenomenon; it is also a complicated scientific problem with applications in the field of mining engineering. In situ pyrolysis for coal gas generation is just such a problem, involving material and structural changes in the coal and surrounding rocks, with massive thermal and chemical effects. The transport properties of the coal are substantially changed, which in turn affect the thermal and chemico-mechanical reactions. A series of laboratory experiments on pore structure and permeability changes during gas coal pyrolysis were carried; the experimental procedure and results are described and analyzed in this study. The pore volume and permeability of tested specimens experienced modest changes during the heating process from 20 to 300°C, but when heated from 300 to 400°C, large pores in the specimens greatly increased and the overall porosity reached 23% at 400°C, which is larger than the percolation threshold value of the rock mass with pores and cracks. The permeability of the specimens increased exponentially with temperature, evidencing the massive structural changes that took place in the specimens during the pyrolysis process. In the high temperature range from 400 to 600°C, fewer changes in the specific surface area of microscopic and small pores in the coal took place, but the pore volume and porosity increased linearly with temperature.  相似文献   

17.
Based on the nonlinear Hoek–Brown failure criterion, elastoplastic analytical solutions are developed for the elastoplastic stresses, strains and plastic zones around a circular tunnel subjected to different value of the axial in situ stress. Effects of the transverse in situ stress, the axial in situ stress and the strength parameters of rock masses on the elastoplastic stresses, strains and plastic zones in the surrounding rock masses are investigated. It is found from the numerical results that the stresses, strains, and plastic zones in the surrounding rock depend not only on the transverse in situ stress but also on the axial in situ stress as well as the mechanical parameters of rock masses.  相似文献   

18.
煤体中爆炸应力波传播与衰减规律模拟实验研究   总被引:2,自引:0,他引:2  
在岩石爆破理论的基础上分析了煤体中爆炸应力波的作用机理,借助损伤力学理论探讨了煤体在 爆炸应力波作用下的损伤断裂准则。煤体中爆炸应力波传播与衰减规律模拟实验结果表明:煤体中爆炸应力 波一般包含2段波形,第1段由压缩相和拉伸相组成简单波形,第2段是由多种作用形成的复杂波形;爆炸应 力波作用下,煤体首先承受压应力,而后承受拉应力,且压缩相的作用时间较拉伸相作用时间短;煤体中爆炸 应力波的衰减速度较一般岩体中的快,实验条件下应力波衰减因数符合=3-/(1-),爆炸应力波的主要 作用是在煤体中形成少量新裂隙、激活煤体中原生裂隙并打破煤体中瓦斯气体的平衡状态。  相似文献   

19.
The verified Darcy–Brinkman model and boundary perturbation method are used to study the Brinkman flow in a tube with a bumpy surface, assuming the amplitude of the bumps is small compared to the mean tube radius. This study is important to understand the abnormal flow conditions caused by the boundary irregularities in diseased vessels. The mean rate flow is found, up to second-order correction, as a function of circumferential and longitudinal wave numbers and the permeability parameter of the porous medium. Numerical results displaying the velocity components and bumpiness functions are obtained for various values of the physical parameters of the problem. The results are tabulated and represented graphically for various physical parameters. It is found that, for every permeability parameter and for given bump area, there exists a circumferential wave number, for which the flow resistance is minimized. The limiting cases of Stokes and Darcy’s flows of the bumpiness function are discussed and compared with the available results in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号