首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A new stable unstructured finite volume method is presented for parallel large-scale simulation of viscoelastic fluid flows. The numerical method is based on the side-centered finite volume method where the velocity vector components are defined at the mid-point of each cell face, while the pressure term and the extra stress tensor are defined at element centroids. The present arrangement of the primitive variables leads to a stable numerical scheme and it does not require any ad-hoc modifications in order to enhance the pressure–velocity–stress coupling. The log-conformation representation proposed in [R. Fattal, R. Kupferman, Constitutive laws for the matrix–logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123 (2004) 281–285] has been implemented in order improve the limiting Weissenberg numbers in the proposed finite volume method. The time stepping algorithm used decouples the calculation of the polymeric stress by solution of a hyperbolic constitutive equation from the evolution of the velocity and pressure fields by solution of a generalized Stokes problem. The resulting algebraic linear systems are solved using the FGMRES(m) Krylov iterative method with the restricted additive Schwarz preconditioner for the extra stress tensor and the geometric non-nested multilevel preconditioner for the Stokes system. The implementation of the preconditioned iterative solvers is based on the PETSc library for improving the efficiency of the parallel code. The present numerical algorithm is validated for the Kovasznay flow, the flow of an Oldroyd-B fluid past a confined circular cylinder in a channel and the three-dimensional flow of an Oldroyd-B fluid around a rigid sphere falling in a cylindrical tube. Parallel large-scale calculations are presented up to 523,094 quadrilateral elements in two-dimension and 1,190,376 hexahedral elements in three-dimension.  相似文献   

2.
This paper presents the application of a preconditioned conjugate-gradient-like method to a non-self-adjoint problem of interest in underground flow simulation. The method furnishes a reliable iterative solution scheme for the non-symmetric matrices arising at each iteration of the non-linear time-stepping scheme. The method employs a generalized conjugate residual scheme with nested factorization as a preconditioner. Model runs demonstrate significant computational savings over direct sparse matrix solvers.  相似文献   

3.
A finite element, thermally coupled incompressible flow formulation considering phase‐change effects is presented. This formulation accounts for natural convection, temperature‐dependent material properties and isothermal and non‐isothermal phase‐change models. In this context, the full Navier–Stokes equations are solved using a generalized streamline operator (GSO) technique. The highly non‐linear phase‐change effects are treated with a temperature‐based algorithm, which provides stability and convergence of the numerical solution. The Boussinesq approximation is used in order to consider the temperature‐dependent density variation. Furthermore, the numerical solution of the coupled problem is approached with a staggered incremental‐iterative solution scheme, such that the convergence criteria are written in terms of the residual vectors. Finally, this formulation is used for the solutions of solidification and melting problems validating some numerical results with other existing solutions obtained with different methodologies. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In the present work a new iterative method for solving the Navier-Stokes equations is designed. In a previous paper a coupled node fill-in preconditioner for iterative solution of the Navier-Stokes equations proved to increase the convergence rate considerably compared with traditional preconditioners. The further development of the present iterative method is based on the same storage scheme for the equation matrix as for the coupled node fill-in preconditioner. This storage scheme separates the velocity, the pressure and the coupling of pressure and velocity coefficients in the equation matrix. The separation storage scheme allows for an ILU factorization of both the velocity and pressure unknowns. With the inner-outer solution scheme the velocity unknowns are eliminated before the resulting equation system for the pressures is solved iteratively. After the pressure unknown has been found, the pressures are substituted into the original equation system and the velocities are also found iteratively. The behaviour of the inner-outer iterative solution algorithm is investigated in order to find optimal convergence criteria for the inner iterations and compared with the solution algorithm for the original equation system. The results show that the coupled node fill-in preconditioner of the original equation system is more efficient than the coupled node fill-in preconditioner of the reduced equation system. However, the solution technique of the reduced equation system revals properties which may be advantageous in future solution algorithms.  相似文献   

5.
高阶谱元区域分解算法求解定常方腔驱动流   总被引:2,自引:0,他引:2  
主要利用Jacobian-free的Newton-Krylov方法求解定常不可压缩Navier-Stokes方程,将基于高阶谱元法的区域分解Stokes算法的非定常时间推进步作为Newton迭代的预处理,回避了传统Newton方法Jacobian矩阵的显式装配,节省了程序内存,同时降低了Newton迭代线性系统的条件数,且没有非线性对流项的隐式求解,大大加快了收敛速度。对有分析解的Kovasznay流动的计算结果表明,本高阶谱元法在空间上有指数收敛的谱精度,且对定常解的Newton迭代是二次收敛的。本文模拟了二维方腔顶盖一致速度驱动流,同基准解符合得很好,表明本文方法是准确可靠的。本文还考虑了Re=800时方腔顶盖正弦速度驱动流,除得到已知的一个稳定对称解和一对稳定非对称解外,还获得了一对新的不稳定的非对称解。  相似文献   

6.
We present a new fast iterative solution technique for the large sparse-matrix system that is commonly encountered in the mixed finite-element formulation of transient viscoelastic flow simulation: the DEVSS (discrete elastic-viscous stress splitting) method. A block-structured preconditioner for the velocity, pressure and viscous polymer stress has been proposed, based on a block reduction of the discrete system, designed to maintain spectral equivalence with the discrete system. The algebraic multigrid method and the diagonally scaled conjugate gradient method are applied to the preconditioning sub-block systems and a Krylov subspace iterative method (MINRES) is employed as an outer solver. We report the performance of the present solver through example problems in 2D and 3D, in comparison with the corresponding Stokes problems, and demonstrate that the outer iteration, as well as each block preconditioning sub-problem, can be solved within a fixed number of iterations. The required CPU time for the entire problem scales linearly with the number of degrees of freedom, indicating O(N) performance of this solution algorithm.  相似文献   

7.
A segregated algorithm for the solution of laminar incompressible, two- and three-dimensional flow problems is presented. This algorithm employs the successive solution of the momentum and continuity equations by means of a decoupled implicit solution method. The inversion of the coefficient matrix which is common for all momentum equations is carried out through an approximate factorization in upper and lower triangular matrices. The divergence-free velocity constraint is satisfied by formulating and solving a pressure correction equation. For the latter a combined application of a preconditioning technique and a Krylov subspace method is employed and proved more effecient than the approximate factorization method. The method exhibits a monotonic convergence, it is not costly in CPU time per iteration and provides accurate solutions which are independent of the underrelaxation parameter used in the momentum equations. Results are presented in two- and three-dimensional flow problems.  相似文献   

8.
A highly parallel time integration method is presented for calculating viscoelastic flows with the DEVSS-G/DG finite element discretization. The method is a synthesis of an operator splitting time integration method that decouples the calculation of the polymeric stress by solution of a hyperbolic constitutive equation from the evolution of the velocity and pressure fields by solution of a generalized Stokes problem. Both steps are performed in parallel. The discontinuous finite element discretization of the hyperbolic constitutive equation leads to highly-parallel element-by-element calculation of the stress at each time step. The Stokes-like problem is solved by using the BiCGStab Krylov iterative method implemented with the block complement and additive levels method (BCALM) preconditioner. The solution method is demonstrated for the calculation of two-dimensional (2D) flow of an Oldroyd-B fluid around an isolated cylinder confined between two parallel plates. These calculations use extremely fine finite elements and expose new features of the solution structure.  相似文献   

9.
A technique combining the features of parameter differentiation and finite differences is presented to compute the flow of viscoelastic fluids. Two flow problems are considered: (i) three-dimensional flow near a stagnation point and (ii) axisymmetric flow due to stretching of a sheet. Both flows are characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. The exact numerical solutions are obtained using the technique described in the paper. Also, the first-order perturbation solutions (in terms of the viscoelastic fluid parameter) are derived. A comparison of the results shows that the perturbation method is inadequate in predicting some of the vital characteristic features of the flows, which can possibly be revealed only by the exact numerical solution.  相似文献   

10.
Semidirect solution techniques can be an effective alternative to the more conventional iterative approaches used in many finite difference methods. This paper summarizes several semidirect techniques which generally have not been applied to the Navier–Stokes and energy equations in finite difference form. The methods presented use both successive substitution and Jacobian-based updates as well as two variations of Broyden's full matrix update. A hybrid method is also presented, as is a norm-reducing search technique that can be used to enhance the convergence characteristics of any semidirect approach. These methods have been compared with the well known iterative methods SIMPLE and SIMPLER. The comparison was performed on the natural convection and driven cavity problems. The semidirect methods proved to be reliably convergent without the need for a priori specification of variable under-relaxation factors, which was necessary with the iterative methods. Natural convection and driven cavity solutions have been readily obtained with the proposed methods for Rayleigh and Reynolds numbers up to 109 and 106 respectively. Of the semidirect techniques, the hybrid approach was the most robust. From an arbitrary zero initial guess this method was able to obtain a solution to the natural convection problem for Rayleigh numbers three orders of magnitude larger than was possible with the Newton-Raphson update. The computational effort required by the semidirect methods is comparable to that required by the iterative methods; however, the memory requirements can be significantly greater.  相似文献   

11.
A pseudo‐spectral method for the solution of incompressible flow problems based on an iterative solver involving an implicit treatment of linearized convective terms is presented. The method allows the treatment of moderately complex geometries by means of a multi‐domain approach and it is able to cope with non‐constant fluid properties and non‐orthogonal problem domains. In addition, the fully implicit scheme yields improved stability properties as opposed to semi‐implicit schemes commonly employed. Key components of the method are a Chebyshev collocation discretization, a special pressure–correction scheme, and a restarted GMRES method with a preconditioner derived from a fast direct solver. The performance of the proposed method is investigated by considering several numerical examples of different complexity, and also includes comparisons to alternative solution approaches based on finite‐volume discretizations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A parallel solver based on domain decomposition is presented for the solution of large algebraic systems arising in the finite element discretization of mechanical problems. It is hybrid in the sense that it combines a direct factorization of the local subdomain problems with an iterative treatment of the interface system by a parallel GMRES algorithm. An important feature of the proposed solver is the use of a set of Lagrange multipliers to enforce continuity of the finite element unknowns at the interface. A projection step and a preconditioner are proposed to control the conditioning of the interface matrix. The decomposition of the finite element mesh is formulated as a graph partitioning problem. A two-step approach is used where an initial decomposition is optimized by non-deterministic heuristics to increase the quality of the decomposition. Parallel simulations of a Navier–Stokes flow problem carried out on a Convex Exemplar SPP system with 16 processors show that the use of optimized decompositions and the preconditioning step are keys to obtaining high parallel efficiencies. Typical parallel efficiencies range above 80%. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Stream function–vorticity finite element solution of two-dimensional incompressible viscous flow and natural convection is considered. Steady state solutions of the natural convection problem have been obtained for a wide range of the two independent parameters. Use of boundary vorticity formulae or iterative satisfaction of the no-slip boundary condition is avoided by application of the finite element discretization and a displacement of the appropriate discrete equations. Solution is obtained by Newton–Raphson iteration of all equations simultaneously. The method then appears to give a steady solution whenever the flow is physically steady, but it does not give a steady solution when the flow is physically unsteady. In particular, no form of asymmetric differencing is required. The method offers a degree of economy over primitive variable formulations. Physical results are given for the square cavity convection problem. The paper also reports on earlier work in which the most commonly used boundary vorticity formula was found not to satisfy the no-slip condition, and in which segregated solution procedures were attempted with very minimal success.  相似文献   

14.
Intrusive reduced order modeling techniques require access to the solver's discretization and solution algorithm, which are not available for most computational fluid dynamics codes. Therefore, a nonintrusive reduction method that identifies the system matrix of linear fluid dynamical problems with a least-squares technique is presented. The methodology is applied to the linear scalar transport convection-diffusion equation for a 2D square cavity problem with a heated lid. The (time-dependent) boundary conditions are enforced in the obtained reduced order model (ROM) with a penalty method. The results are compared and the accuracy of the ROMs is assessed against the full order solutions and it is shown that the ROM can be used for sensitivity analysis by controlling the nonhomogeneous Dirichlet boundary conditions.  相似文献   

15.
An analysis is performed for the unsteady mixed convection flow of an incompressible viscous fluid about a stagnation point on a stretching sheet in the presence of a variable free stream. The equations of motion and energy are transformed into the ordinary differential equations by using similarity transformations. Homotopy analysis method is used for the solution of the governing problem. The results have been discussed by plots. The present values of the function are shown very close to the previous limiting solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
We present the benchmarking of a new finite element – finite volume (FEFV) solution technique capable of modeling transient multiphase thermohaline convection for geological realistic p-T-X conditions. The algorithm embeds a new and accurate equation of state for the NaCl–H2O system. Benchmarks are carried out to compare the numerical results for the various component-processes of multiphase thermohaline convection. They include simulations of (i) convection driven by temperature and/or concentration gradients in a single-phase fluid (i.e., the Elder problem, thermal convection at different Rayleigh numbers, and a free thermohaline convection example), (ii) multiphase flow (i.e., the Buckley–Leverett problem), and (iii) energy transport in a pure H2O fluid at liquid, vapor, supercritical, and two-phase conditions (i.e., comparison to the U.S. Geological Survey Code HYDROTHERM). The results produced with the new FEFV technique are in good agreement with the reference solutions. We further present the application of the FEFV technique to the simulation of thermohaline convection of a 400°C hot and 10 wt.% saline fluid rising from 4 km depth. During the buoyant rise, the fluid boils and separates into a high-density, high-salinity liquid phase and a low-density, low-salinity vapor phase.  相似文献   

17.
提出了数值求解三维非定常变系数对流扩散方程的一种高精度全隐紧致差分格式,该格式在空间上具有四阶精度,时间具有二阶精度。为了克服传统迭代法在每一个时间步上迭代求解隐格式时收敛速度慢的缺点,采用多重网格加速技术,建立了适用于本文高精度全隐紧致格式的多重网格算法,从而大大加快了迭代收敛速度。数值实验结果验证了本文方法的精确性、稳定性和对高网格雷诺数问题的强适应性。  相似文献   

18.
The similarity solution for the problem of mixed convection boundary layer flow adjacent to a stretching vertical sheet in an incompressible electrically conducting fluid in the presence of a transverse magnetic field is presented. It is assumed that the sheet is stretched with a power-law velocity and is subjected to a variable surface heat flux. The governing partial differential equations are first transformed into a system of non-linear ordinary differential equations, before being solved numerically by the Keller-box method. The numerical results obtained are then compared with previously reported cases available in the literature as well as the series solution for certain values of parameters, to support their validity. The effects of the governing parameters on the flow field and heat transfer characteristics are obtained and discussed.  相似文献   

19.
The computational efficiency of three numerical schemes has been examined for the solution of a linearized system of equations resulting from the finite element discretization of a viscoelastic fluid flow problem. The first scheme is a modified frontal solver, which solves the linear system of equations directly. The other two, one based on a biconjugate gradient stabilized (BiCGStab) method and another based on a generalized minimal residual (GMRES) method, are iterative schemes. The stick-slip problem and the four-to-one contraction problem were analyzed and the viscoelastic fluid was assumed to obey the Oldroyd-B model. The two iterative schemes are superior to the direct scheme in terms of CPU time consumed and the BiCGStab scheme is even faster than the GMRES scheme. The range of convergence for both iterative schemes is compatible with that of the direct scheme.  相似文献   

20.
An inexact Newton method is used to solve the steady, incompressible Navier–Stokes and energy equation. Finite volume differencing is employed on a staggered grid using the power law scheme of Patankar. Natural convection in an enclosed cavity is studied as the model problem. Two conjugate-gradient -like algorithms based upon the Lanczos biorthogonalization procedure are used to solve the linear systems arising on each Newton iteration. The first conjugate-gradient-like algorithm is the transpose-free quasi-minimal residual algorithm (TFQMR) and the second is the conjugate gradients squared algorithm (CGS). Incomplete lower-upper (ILU) factorization of the Jacobian matrix is used as a right preconditioner. The performance of the Newton- TFQMR algorithm is studied with regard to different choices for the TFQMR convergence criteria and the amount of fill-in allowed in the ILU factorization. Performance data are compared with results using the Newton-CGS algorithm and previous results using LINPACK banded Gaussian elimination (direct-Newton). The inexact Newton algorithms were found to be CPU competetive with the direct-Newton algorithm for the model problem considered. Among the inexact Newton algorithms, Newton-CGS outperformed Newton- TFQMR with regard to CPU time but was less robust because of the sometimes erratic CGS convergence behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号