首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free (or open) boundary condition (FBC, OBC) was proposed by Papanastasiou et al. (A new outflow boundary condition, International Journal for Numerical Methods in Fluids, 1992; 14:587–608) to handle truncated domains with synthetic boundaries where the outflow conditions are unknown. In the present work, implementation of the FBC has been tested in several benchmark problems of viscous flow in fluid mechanics. The FEM is used to provide numerical results for both cases of planar and axisymmetric domains under laminar, isothermal or non‐isothermal, steady‐state conditions, for Newtonian fluids. The effects of inertia, gravity, compressibility, pressure dependence of the viscosity, slip at the wall, and surface tension are all considered individually in the extrudate‐swell benchmark problem for a wide range of the relevant parameters. The present results extend previous ones regarding the applicability of the FBC and show cases where the FBC is inappropriate, namely in the extrudate‐swell problem with gravity or surface‐tension effects. Particular emphasis has been given to the pressure at the outflow, which is the most sensitive quantity of the computations. In all cases where FBC is appropriate, excellent agreement has been found in comparisons with results from very long domains. The formulation for Picard‐type iterations is given in some detail, and the differences with the Newton–Raphson formulation are highlighted regarding some computational aspects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A higher‐order finite analytic scheme based on one‐dimensional finite analytic solutions is used to discretize three‐dimensional equations governing turbulent incompressible free surface flow. In order to preserve the accuracy of the numerical scheme, a new, finite analytic boundary condition is proposed for an accurate numerical solution of the partial differential equation. This condition has higher‐order accuracy. Thus, the same order of accuracy is used for the boundary. Boundary conditions were formulated and derived for fluid inflow, outflow, impermeable surfaces and symmetry planes. The derived boundary conditions are treated implicitly and updated with the solution of the problem. The basic idea for the derivation of boundary conditions was to use the discretized form of the governing equations for the fluid flow simplified on the boundaries and flow information. To illustrate the influence of the higher‐order effects at the boundaries, another, lower‐order finite analytic boundary condition, is suggested. The simulations are performed to demonstrate the validity of the present scheme and boundary conditions for a Wigley hull advancing in calm water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The numerical solution of the fluid flow governing equations requires the implementation of certain boundary conditions at suitable places to make the problem well‐posed. Most of numerical strategies exhibit weak performance and obtain inaccurate solutions if the solution domain boundaries are not placed at adequate locations. Unfortunately, many practical fluid flow problems pose difficulty at their boundaries because the required information for solving the PDE's is not available there. On the other hand, large solution domains with known boundary conditions normally need a higher number of mesh nodes, which can increase the computational cost. Such difficulties have motivated the CFD workers to confine the solution domain and solve it using artificial boundaries with unknown flow conditions prevailing there. In this work, we develop a general strategy, which enables the control‐volume‐based methods to close the outflow boundary at arbitrary locations where the flow conditions are not known prior to the solution. In this regard, we extend suitable conservative statements at the outflow boundary. The derived statements gradually detect the correct boundary conditions at arbitrary boundaries via an implicit procedure using a finite element volume method. The extended statements are validated by solving the truncated benchmark backward‐facing step problem. The investigation shows that the downstream boundary can pass through a recirculation zone without deteriorating the accuracy of the solution either in the domain or at its boundaries. The results indicate that the extended formulation is robust enough to be employed in solution domains with unknown boundary conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Inflow and outflow boundary conditions are essential for the application of computational fluid dynamics to many engineering scenarios. In this paper we present a new boundary condition implementation that enables the simulation of flow through permeable boundaries in the Lagrangian mesh‐free method, smoothed particle hydrodynamics (SPH). Each permeable boundary is associated with an inflow or outflow zone outside the domain, in which particles are created or removed as required. The analytic boundary condition is applied by prescribing the appropriate variables for particles in an inflow or outflow zone, and extrapolating other variables from within the domain. Characteristic‐based non‐reflecting boundary conditions, described in the literature for mesh‐based methods, can be implemented within this framework. Results are presented for simple one‐dimensional flows, quasi‐one‐dimensional compressible nozzle flow, and two‐dimensional flow around a cylinder at Reynolds numbers of 40 and 100 and a Mach number of 0.1. These results establish the capability of SPH to model flows through open domains, opening a broad new class of applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Finite element solutions of the primitive equation (PE) form of the shallow water equations are notorious for the severe spurious 2Δx modes which appear. Wave equation (WE) solutions do not exhibit these numerical modes. In this paper we show that the severe spurious modes in PE solutions are strongly influenced by essential normal flow boundary conditions in the coupled continuity-momentum system of equations. This is demonstrated through numerical examples that avoid the use of essential normal flow boundary conditions either by specifying elevation values over the entire boundary or by implementing natural flow boundary conditions in the weak weighted residual form of the continuity equation. Results from a series of convergence tests show that PE solutions are of nearly the same quality as WE solutions when spurious modes are suppressed by alternative specification of the boundary conditions. Network intercomparisons indicate that varying nodal support does not excite spurious modes in a solution, although it does enhance the spurious modes introduced when an essential normal flow boundary condition is used. Dispersion analysis of discrete equations for interior and boundary nodes offers an explanation of the observed solution behaviour. For certain PE algorithms a mixed situation can arise where the boundary nodes exhibit a monotonic (noise-free) dispersion relationship and the interior nodes exhibit a folded (noisy) dispersion relationship. We have found that the mixed situation occurs when all boundary nodes are specified elevation nodes (which are enforced as essential conditions in the continuity equation) or when specified flow boundary nodes are treated as natural boundary conditions in the continuity equation. In either case the effect is to generate a solution that is essentially free of noise. Apparently, the monotonic dispersion behaviour at the boundaries suppresses the otherwise noisy behaviour caused by the folded dispersion relation on the interior.  相似文献   

6.
In numerically simulating heat and mass transport processes in an unconfined domain involving synthetic open (inflow and/or outflow) boundaries, how to properly specify flow conditions at these boundaries can become a challenging issue. In this work, within the context of a pressure‐based finite volume method under an unstructured grid, a solution procedure without the need for explicit specification of flow profiles at any of these boundaries when simulating incompressible fluid flow is proposed and numerically examined. Within this methodology, the flow at any open boundary is not necessarily assumed to be unidirectional or fully developed; indeed, the sole information required is the mass flow rate crossing the boundary. As a result, one can select the specific region of interest to perform simulations, rather than having to artificially increase the flow domain so as to invoke fully developed flow at all open boundaries. This not only greatly reduces computational costs (both in terms of memory requirements and simulation run‐time) but provides the means to engage with flow problems, which otherwise cannot be solved with currently available methods for handling the flow conditions at open boundaries. The proposed methodology is demonstrated by simulating laminar flow of an incompressible fluid in a two‐dimensional planar channel with a 90° T‐branch, a known inflow rate, and flow splits for the two outflow channels. The results obtained by placing the entrance and the two exits at different locations show that the flow behavior predicted is completely unaffected by using a highly truncated domain. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The accuracy of boundary conditions for computational aeroacoustics is a well‐known challenge, due in part to the necessity of truncating the flow domain and replacing the analytical boundary conditions at infinity with numerical boundary conditions. In particular, the inflow boundary condition involving turbulent velocity or scalar fields is likely to introduce spurious waves into the domain, therefore degrading the flow behavior and deteriorating the physical acoustic waves. In this work, a method to generate low‐noise, divergence‐free, synthetic turbulence for inflow boundary conditions is proposed. It relies on the classical view of turbulence as a superposition of random eddies convected with the mean flow. Within the proposed model, the vector potential and the requirement that the individual eddies must satisfy the linearized momentum equations about the mean flow are used. The model is tested using isolated eddies convected through the inflow boundary and an experimental benchmark data for spatially decaying isotropic turbulence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A two‐dimensional multi‐phase model for immiscible binary fluid flow including moving immersed objects is presented. The fluid motion is described by the incompressible Navier–Stokes equation coupled with a phase‐field model based on van der Waals' free energy density and the Cahn–Hilliard equation. A new phase‐field boundary condition was implemented with minimization of the free energy in a direct way, to specifically improve the physical behavior of the contact line dynamics for moving immersed objects. Numerical stability and execution time were significantly improved by the use of the new boundary condition. Convergence toward the analytical solution was demonstrated for equilibrium contact angle, the Lucas–Washburn theory and Stefan's problem. The proposed model may be used for multi‐phase flow problems with moving boundaries of complex geometry, such as the penetration of fluid into a deformable, porous medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical solution for steady incompressible flow over a two-dimensional backward-facing step is developed using a Galerkin-based finite element method. The Reynolds number for the simulations is 800. Computations are performed on an extended channel length to minimize the effect of the outflow boundary on the upstream recirculation zones. A thorough mesh refinement study is performed to validate the results. Extensive profile data at several channel locations are provided to allow future testing and evaluation of outflow boundary conditions.  相似文献   

10.
An attempt is made to find out the suitable entrainment and exit boundary conditions in laminar flow situations. Streamfunction vorticity formulation of the Navier–Stokes equations are solved by ADI method. Two‐dimensional laminar plane wall jet flow is used to test different forms of the boundary conditions. Results are compared with the experimental and similarity solution and the proper boundary condition is suggested. The Kind 1 boundary condition is recommended. It consists of zero first derivative condition for velocity variable and for streamfunction equation, mixed derivative at the entrainment and exit boundaries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The application of grid stretching or grid adaptation is generally required in order to optimize the distribution of nodal points for fluid-dynamic simulation. This is necessitated by the presence of disjoint high gradient zones, that represent boundary or free shear layers, reversed flow or vortical flow regions, triple deck structures, etc. A domain decomposition method can be used in conjunction with an adaptive multigrid algorithm to provide an effective methodology for the development of optimal grids. In the present study, the Navier-Stokes (NS) equations are approximated with a reduced Navier-Stokes (RNS) system, that represents the lowest-order terms in an asymptotic Re expansion. This system allows for simplified boundary conditions, more generality in the location of the outflow boundary, and ensures mass conservation in all subdomain grid interfaces, as well as at the outflow boundary. The higher-order (NS) diffusion terms are included through a deferred corrector, in selected subdomains, when necessary. Adaptivity in the direction of refinement is achieved by grid splitting or domain decomposition in each level of the multigrid procedure. Normalized truncation error estimates of key derivatives are used to determine the boundaries of these subdomains. The refinement is optimized in two co-ordinate directions independently. Multidirectional adaptivity eliminates the need for grid stretching so that uniform grids are specified in each subdomain. The overall grid consists of multiple domains with different meshes and is, therefore, heavily graded. Results and computational efficiency are discussed for the laminar flow over a finite length plate and for the laminar internal flow in a backward-facing step channel.  相似文献   

12.
A review of unsteady computational boundary conditions for computational aeroacoustics (CAA) problems is presented. This review is meant to serve as a general overview of previous work on solid wall, radiation and outflow boundary conditions that have been proposed and used in CAA calculations. Both the physical nature of the boundary condition problem as well as the numerical considerations affecting their implementation are discussed.  相似文献   

13.
A high-order immersed boundary method is devised for the compressible Navier-Stokes equations by employing high-order summation-by-parts difference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall boundary conditions via flow variables at ghost points. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high-order polynomials. The approach is verified and validated for compressible flow past a circular cylinder at moderate Reynolds numbers. The tonal sound generated by vortex shedding from a circular cylinder is also investigated. In order to demonstrate the capability of the solver to handle complex geometries in practical cases, flow in a cross-section of a human upper airway is simulated.  相似文献   

14.
In this paper, a new immersed‐boundary method for simulating flows over complex immersed, moving boundaries is presented. The flow is computed on a fixed Cartesian mesh and the solid boundaries are allowed to move freely through the mesh. The present method is based on a finite‐difference approach on a staggered mesh together with a fractional‐step method. It must be noted that the immersed boundary is generally not coincident with the position of the solution variables on the grid, therefore, an appropriate strategy is needed to construct a relationship between the curved boundary and the grid points nearby. Furthermore, a momentum forcing is added on the body boundaries and also inside the body to satisfy the no‐slip boundary condition. The immersed boundary is represented by a series of interfacial markers, and the markers are also used as Lagrangian forcing points. A linear interpolation is then used to scale the Lagrangian forcing from the interfacial markers to the corresponding grid points nearby. This treatment of the immersed‐boundary is used to simulate several problems, which have been validated with previous experimental results in the open literature, verifying the accuracy of the present method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The flow around spherical, solid objects is considered. The boundary conditions on the solid boundaries have been applied by replacing the boundary with a surface force distribution on the surface, such that the required boundary conditions are satisfied. The velocity on the boundary is determined by extrapolation from the flow field. The source terms are determined iteratively, as part of the solution. They are then averaged and are smoothed out to nearby computational grid points. A multi‐grid scheme has been used to enhance the computational efficiency of the solution of the force equations. The method has been evaluated for flow around both moving and stationary spherical objects at very low and intermediate Reynolds numbers. The results shows a second order accuracy of the method both at creeping flow and at Re=100. The multi‐grid scheme is shown to enhance the convergence rate up to a factor 10 as compared to single grid approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Global linear stability analysis combined with computational fluid dynamics (CFD) is considered useful for understanding the physics of fluid flows. However, the numerical techniques of global linear stability analysis for compressible flows have not been well established in comparison with those for incompressible flows. In this study, we develop and assess a set of appropriate numerical techniques required to conduct a global linear stability analysis for compressible flows. For the eigensystem analysis, the Arnoldi method combined with time integration is in effect to preserve the memory (RAM) size of the computer. The compact difference scheme is used for the CFD analysis from the viewpoints of computing accurate global modes and saving memory by reducing the number of grid points to obtain the necessary spatial resolution. To assess the proposed method, two‐dimensional compressible flow problems, including regularized cavity flow, flow around a square cylinder, and the compressible mixing layer, are analyzed, and it is confirmed that the proposed method can obtain accurate mode shapes, growth rate, and frequency of the corresponding global modes. In addition, influences and an appropriate formulation of the outflow boundary conditions are investigated. Results reveal that the outflow boundary causes spurious unstable modes in the global linear stability analysis, and the radiation and outflow boundary condition and the extension of the computational domain with grid stretching keep the spurious unstable modes to a minimum. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The purpose of this article is to present a technique to optimally control river flood using a drainage basin considering a moving boundary. The main theme of this article is to obtain outflow discharge from the drainage basin that maintains the water level at a downstream point and empties the drainage basin as soon as possible. The water flow phenomenon inside the drainage basin when a river flood occurs is considered. This phenomenon can be analysed by the finite element method considering a moving boundary. The optimal control theory can be implemented to obtain the optimal control discharge. The finite element analysis with a moving boundary is introduced in the optimal control theory. A new boundary condition on the downstream side of the river is proposed. This condition is formulated by the solitary wave condition based on the basic water level being capable of representing natural water surface. As a numerical study, optimal control of shallow water flow is carried out for the Tsurumi River and its drainage basin model.  相似文献   

18.
A mesh‐free particle method, based on the moving particle semi‐implicit (MPS) interaction model, has been developed for the simulation of two‐dimensional open‐boundary free‐surface flows. The incompressibility model in the original MPS has been replaced with a weakly incompressible model. The effect of this replacement on the efficiency and accuracy of the model has been investigated. The new inflow–outflow boundary conditions along with the particle recycling strategy proposed in this study extend the application of the model to open‐boundary problems. The final model is able to simulate open‐boundary free surface flow in cases of large deformation and fragmentation of free surface. The models and proposed algorithms have been validated and applied to sample problems. The results confirm the model's efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
For many problems in ship hydrodynamics, the effects of air flow on the water flow are negligible (the frequently called free surface conditions), but the air flow around the ship is still of interest. A method is presented where the water flow is decoupled from the air solution, but the air flow uses the unsteady water flow as a boundary condition. The authors call this a semi‐coupled air/water flow approach. The method can be divided into two steps. At each time step the free surface water flow is computed first with a single‐phase method assuming constant pressure and zero stress on the interface. The second step is to compute the air flow assuming the free surface as a moving immersed boundary (IB). The IB method developed for Cartesian grids (Annu. Rev. Fluid Mech. 2005; 37 :239–261) is extended to curvilinear grids, where no‐slip and continuity conditions are used to enforce velocity and pressure boundary conditions for the air flow. The forcing points close to the IB can be computed and corrected under a sharp interface condition, which makes the computation very stable. The overset implementation is similar to that of the single‐phase solver (Comput. Fluids 2007; 36 :1415–1433), with the difference that points in water are set as IB points even if they are fringe points. Pressure–velocity coupling through pressure implicit with splitting of operators or projection methods is used for water computations, and a projection method is used for the air. The method on each fluid is a single‐phase method, thus avoiding ill‐conditioned numerical systems caused by large differences of fluid properties between air and water. The computation is only slightly slower than the single‐phase version, with complete absence of spurious velocity oscillations near the free surface, frequently present in fully coupled approaches. Validations are performed for laminar Couette flow over a wavy boundary by comparing with the analytical solution, and for the surface combatant model David Taylor Model Basin (DTMB) 5512 by comparing with Experimental Fluid Dynamics (EFD) and the results of two‐phase level set computations. Complex flow computations are demonstrated for the ONR Tumblehome DTMB 5613 with superstructure subject to waves and wind, including 6DOF motions and broaching in SS7 irregular waves and wind. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
An investigation on the free flexural vibration of symmetric angle-ply thin trapezoidal plates continuous over arbitrarily distributed point supports is reported. A hybrid energy approach which combines the pb-2 Rayleigh-Ritz method with the Lagrangian multiplier method is proposed for the modelling of the aforementioned plate problem. The pb-2 Rayleigh-Ritz method uses a set of Ritz functions generated from the product of a two-dimensional polynomial and the equations of boundaries each raised to the power of 0, 1 or 2 corresponding to a free, simply-supported or clamped edge, respectively. The geometric boundary conditions associated with the point supports are satisfied through the use of Lagrangian multipliers. In this paper, some new solutions for the natural frequencies of several laminated trapezoidal plates with different stacking sequences and location of point supports are presented. The first known mode shapes by means of contour plots for such laminated plates are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号