首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The Holly-Preissmann two-point finite difference scheme (HP method) has been popularly used for solving the advection equation. The key idea of this scheme is to solve the dependent variable (i.e. the concentration for the pollutant transport problem) by the method of characteristics with the use of cubic interpolation on the spatial axis. The interpolating polynomials of higher order are constructed by use of the dependent variable and its derivatives at two adjacent grid points. In this paper a new interpolating technique is introduced for incorporation with the Holly-Preissmann two-point method. The new method is denoted herein as the Holly-Preissmann reach-back method (HPRB) and allows the characteristics to project back several time steps beyond the present time level. Through stability analyses it has been observed that the increase of the reach-back time step numbers for the characteristics indeed reduces the numerical damping and dispersive phenomena. A schematic model has been constructed to demonstrate the merits of this new technique for the calculation of the pure advection and dispersion equations. Numerical experiments and comparisons with analytical solutions which support and demonstrate this new technique are presented.  相似文献   

2.
The specified-time-interval (STI) scheme has been used commonly in applying the method of characteristics (MOC) to unsteady open-channel flow problems. However, with the use of STI scheme, the numerical error for the simulation results can always be induced due to the interpolation used to approximate the characteristics trajectory. Hence, in order to remedy the numerical errors caused by the interpolation, one needs to seek some kind of interpolation technique with higher-order accuracy. Instead of the linear interpolation technique, which has been used very commonly and can induce serious numerical diffusion, the Holly--Preissmann two-point, method, which is a cubic interpolation technique with fourth-order of accuracy, is proposed here to integrate with the method of characteristics for the computation of one-dimensional unsteady flow in open channel. The concept of reachback and reachout in space and time directions for the characteristics is also introduced to assure the model stability. The computed results from this new model are compared with those computed by using the Preissmann four-point scheme and the multimode method of characteristics with linear interpolation.  相似文献   

3.
In the framework of the specified‐time‐interval scheme, the accuracy of the characteristic method is greatly related to the form of the interpolation. The linear interpolation was commonly used to couple the characteristics method (LI method) in open channel flow computation. The LI method is easy to implement, but it leads to an inevitable smoothing of the solution. The characteristics method with the Hermite cubic interpolation (HP method, originally developed by Holly and Preissmann, 1977) was then proposed to largely reduce the error induced by the LI method. In this paper, the cubic‐spline interpolation on the space line or on the time line is employed to integrate with characteristics method (CS method) for unsteady flow computation in open channel. Two hypothetical examples, including gradually and rapidly varied flows, are used to examine the applicability of the CS method as compared with the LI method, the HP method, and the analytical solutions. The simulated results show that the CS method is comparable to the HP method and more accurate than the LI method. Without tackling the additional equations for spatial or temporal derivatives, the CS method is easier to implement and more efficient than the HP method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Operator splitting algorithms are frequently used for solving the advection–diffusion equation, especially to deal with advection dominated transport problems. In this paper an operator splitting algorithm for the three-dimensional advection–diffusion equation is presented. The algorithm represents a second-order-accurate adaptation of the Holly and Preissmann scheme for three-dimensional problems. The governing equation is split into an advection equation and a diffusion equation, and they are solved by a backward method of characteristics and a finite element method, respectively. The Hermite interpolation function is used for interpolation of concentration in the advection step. The spatial gradients of concentration in the Hermite interpolation are obtained by solving equations for concentration gradients in the advection step. To make the composite algorithm efficient, only three equations for first-order concentration derivatives are solved in the diffusion step of computation. The higher-order spatial concentration gradients, necessary to advance the solution in a computational cycle, are obtained by numerical differentiations based on the available information. The simulation characteristics and accuracy of the proposed algorithm are demonstrated by several advection dominated transport problems. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
A new scheme which can solve unsteady incompressible flows is described in this paper. The scheme is a variant of the SIMPLE methodology. Typically, a scheme of this type tends to suffer from stability problems, which this new scheme overcomes by taking small intermediate steps within a time step. The calculations made in the intermediate steps are damped to enhance the stability of the scheme. The new stabilised scheme is evaluated for laminar flow around a square cylinder, impulsively started laminar flow over a backward-facing step and fluctuating laminar flow over a backward-facing step. Comparisons are made with other numerical predictions and experimental data. In general, good agreement is found, except for the fluctuating laminar flow over a backward-facing step problem. The new scheme is found to have the same level of accuracy, stability and efficiency in comparison with the PISO scheme, but it is easier to code. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
A comparison is made between the Arnoldi reduction method and the Crank–Nicolson method for the integration in time of the advection–diffusion equation. This equation is first discretized in space by the classic finite element (FE) approach, leading to an unsymmetric first‐order differential system, which is then solved by the aforementioned methods. Arnoldi reduces the native FE equations to a much smaller set to be efficiently integrated in the Arnoldi vector space by the Crank–Nicolson scheme, with the solution recovered back by a standard Rayleigh–Ritz procedure. Crank–Nicolson implements a time marching scheme directly on the original first‐order differential system. The computational performance of both methods is investigated in two‐ and three‐dimensional sample problems with a size up 30 000. The results show that in advection‐dominated problems less then 100 Arnoldi vectors generally suffice to give results with a 10−3–10−4 difference relative to the direct Crank–Nicolson solution. However, while the CPU time with the Crank–Nicolson starts from zero and increases linearly with the number of time steps used in the simulation, the Arnoldi requires a large initial cost to generate the Arnoldi vectors with subsequently much less expensive dynamics for the time integration. The break‐even point is problem‐dependent at a number of time steps which may be for some problems up to one order of magnitude larger than the number of Arnoldi vectors. A serious limitation of Arnoldi is the requirement of linearity and time independence of the flow field. It is concluded that Arnoldi can be cheaper than Crank–Nicolson in very few instances, i.e. when the solution is needed for a large number of time values, say several hundreds or even 1000, depending on the problem. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A hybrid time stepping scheme is developed and implemented by a combination of explicit Runge–Kutta with implicit LU‐SGS scheme at the level of system matrix. In this method, the explicit scheme is applied to those grid cells of blocks that have large local time steps; meanwhile, the implicit scheme is applied to other grid cells of blocks that have smaller allowable local time steps in the same flow field. As a result, the discretized governing equations can be expressed as a compound of explicit and implicit matrix operator. The proposed method has been used to compute the steady transonic turbulent flow over the RAE 2822 airfoil. The numerical results are found to be in excellent agreement with the experimental data. In the validation case, the present scheme saved at least 50% of the memory resources compared with the fully implicit LU‐SGS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, the Nervier–Stokes equations for incompressible flows, modified by the artificial compressibility method, are investigated numerically. To calculate the convective fluxes, a new high‐accuracy characteristics‐based (HACB) scheme is presented in this paper. Comparing the HACB scheme with the original characteristic‐based method, it is found that the new proposed scheme is more accurate and has faster convergence rate than the older one. The second order averaging scheme is used for estimating the viscose fluxes, and spatially discretized equations are integrated in time by an explicit fourth‐order Runge–Kutta scheme. The lid driven cavity flow and flow in channel with a backward facing step have been used as benchmark problems. It is shown that the obtained results using HACB scheme are in good agreement with the standard solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A frequent configuration in computational fluid mechanics combines an explicit time advancing scheme for accuracy purposes and a computational grid with a very small portion of much smaller elements than in the remaining mesh. Two examples of such situations are the travel of a discontinuity followed by a moving mesh, and the large eddy simulation of high Reynolds number flows around bluff bodies where together very thin boundary layers and vortices of much more important size need to be captured. For such configurations, multistage explicit time advancing schemes with global time stepping are very accurate but very CPU consuming. In order to reduce this problem, the multirate (MR) time stepping approach represents an interesting improvement. The objective of such schemes, which allow to use different time steps in the computational domain, is to avoid penalizing the computational cost of the time advancement of unsteady solutions that would become large due to the use of small global time steps imposed by the smallest elements such as those constituting the boundary layers. In the present work, a new MR scheme based on control volume agglomeration is proposed for the solution of the compressible Navier-Stokes equations equipped with turbulence models. The method relies on a prediction step where large time steps are performed with an evaluation of the fluxes on macrocells for the smaller elements for stability purpose and a correction step in which small time steps are employed. The accuracy and efficiency of the proposed method are evaluated on several benchmarks flows: the problem of a moving contact discontinuity (inviscid flow), the computation with a hybrid turbulence model of flows around bluff bodies like a flow around a space probe model at Reynolds number 106, a circular cylinder at Reynolds number 8.4 × 106, and two tandem cylinders at Reynolds number 1.66 × 105 and 1.4 × 105.  相似文献   

10.
The use of the Holly-Preissmann two-point scheme has been very popular for the calculation of the dispersion equation. The key to this scheme is to use the characteristics method incorporating the Hermite cubic interpolation technique to approximate the trajectory foot of the characteristics. This method can avoid the excessive numerical damping and oscillation associated with most finite difference schemes for advection computation. On the basis of the fundamental idea of the Holly-Preissmann two-point scheme, a new technique is introduced herein for the computation of the two-dimensional dispersion equation. This new scheme allows the characteristics projecting back several time steps to fall on the spatial or temporal axis, while the characteristics foot is still solved by the Holly-Preissmann two-point method. The diffusion portion of the dispersion equation is solved by the commonly used Crank-Nicholson method. The calculation for these two processes consisting of advection and diffusion is carried out separately but consecutively in one time step, a method known as the split operator algorithm. A hypothetical model was constructed to demonstrate the applicability of this new technique for the calculation of the pure advection and dispersion equation in two dimensions.  相似文献   

11.
A new implementation of surface tension effects in interfacial flow codes is proposed which is both fully implicit in space, that is the interface never has to be reconstructed, and also semi‐implicit in time, with semi‐implicit referring to the time integration of the surface tension forces. The main idea is to combine two previously separate techniques to yield a new expression for the capillary forces. The first is the continuum surface force (CSF) method, which is used to regularize the discontinuous surface tension force term. The regularization can be elegantly implemented with the use of distance functions, which makes the level set method a suitable choice for the interface‐tracking algorithm. The second is to use a finite element discretization together with the Laplace–Beltrami operator, which enables simple reformulation of the surface tension term into its semi‐implicit equivalent. The performance of the new method is benchmarked against standard explicit methods, where it is shown that the new method is significantly more robust for the chosen test problems when the time steps exceed the numerical capillary time step restriction. Some improvements are also found in the average number of nonlinear iterations and linear multigrid steps taken while solving the momentum equations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A 3D Navier–Stokes solver has been developed to simulate laminar compressible flow over quadrilateral wings. The finite volume technique is employed for spatial discretization with a novel variant for the viscous fluxes. An explicit three-stage Runge–Kutta scheme is used for time integration, taking local time steps according to the linear stability condition derived for application to the Navier–Stokes equations. The code is applied to compute primary and secondary separation vortices at transonic speeds over a 65° swept delta wing with round leading edges and cropped tips. The results are compared with experimental data and Euler solutions, and Reynolds number effects are investigated.  相似文献   

13.
A new characteristic-based method for the solution of the 2D laminar incompressible Navier-Stokes equations is presented. For coupling the continuity and momentum equations, the artificial compressibility formulation is employed. The primitives variables (pressure and velocity components) are defined as functions of their values on the characteristics. The primitives variables on the characteristics are calculated by an upwind diffencing scheme based on the sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. The upwind scheme uses interpolation formulae of third-order accuracy. The time discretization is obtained by the explicit Runge–Kutta method. Validation of the characteristic-based method is performed on two different cases: the flow in a simple cascade and the flow over a backwardfacing step.  相似文献   

14.
A discretization method is presented for the full, steady, compressible Navier–Stokes equations. The method makes use of quadrilateral finite volumes and consists of an upwind discretization of the convective part and a central discretization of the diffusive part. In the present paper the emphasis lies on the discretization of the convective part. The solution method applied solves the steady equations directly by means of a non-linear relaxation method accelerated by multigrid. The solution method requires the discretization to be continuously differentiable. For two upwind schemes which satisfy this requirement (Osher's and van Leer's scheme), results of a quantitative error analysis are presented. Osher's scheme appears to be increasingly more accurate than van Leer's scheme with increasing Reynolds number. A suitable higher-order accurate discretization of the convection terms is derived. On the basis of this higher-order scheme, to preserve monotonicity, a new limiter is constructed. Numerical results are presented for a subsonic flat plate flow and a supersonic flat plate flow with oblique shock wave–boundary layer interaction. The results obtained agree with the predictions made. Useful properties of the discretization method are that it allows an easy check of false diffusion and that it needs no tuning of parameters.  相似文献   

15.
A 2-D analysis is made for the dynamic interactions between viscous flow and one or more circular cylinders. The cylinder is free to respond to the fluid excitation and its motions are part of the solution. The numerical procedure is based on the finite volume discretization of the Navier–Stokes equations on adaptive tri-tree grids which are unstructured and nonorthogonal. Both a fully implicit scheme and a semi-implicit scheme in the time domain have been used for the momentum equations, while the pressure correction method based on the SIMPLE technique is adopted to satisfy the continuity equation. A new upwind method is developed for the triangular and unstructured mesh, which requires information only from two neighbouring cells but is of order of accuracy higher than linear. A new procedure is also introduced to deal with the nonorthogonal term. The pressure on the body surface required in solving the momentum equation is obtained through the Poisson equation in the local cell. Results including flow field, pressure distribution and force are provided for fixed single and multiple cylinders and for an unrestrained cylinder in steady incoming flow with Reynolds numbers at 200 and 500 and in unsteady flow with Keulegan–Carpenter numbers at 5 and 10.  相似文献   

16.
A high‐order Padé alternating direction implicit (ADI) scheme is proposed for solving unsteady convection–diffusion problems. The scheme employs standard high‐order Padé approximations for spatial first and second derivatives in the convection‐diffusion equation. Linear multistep (LM) methods combined with the approximate factorization introduced by Beam and Warming (J. Comput. Phys. 1976; 22 : 87–110) are applied for the time integration. The approximate factorization imposes a second‐order temporal accuracy limitation on the ADI scheme independent of the accuracy of the LM method chosen for the time integration. To achieve a higher‐order temporal accuracy, we introduce a correction term that reduces the splitting error. The resulting scheme is carried out by repeatedly solving a series of pentadiagonal linear systems producing a computationally cost effective solver. The effects of the approximate factorization and the correction term on the stability of the scheme are examined. A modified wave number analysis is performed to examine the dispersive and dissipative properties of the scheme. In contrast to the HOC‐based schemes in which the phase and amplitude characteristics of a solution are altered by the variation of cell Reynolds number, the present scheme retains the characteristics of the modified wave numbers for spatial derivatives regardless of the magnitude of cell Reynolds number. The superiority of the proposed scheme compared with other high‐order ADI schemes for solving unsteady convection‐diffusion problems is discussed. A comparison of different time discretizations based on LM methods is given. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A new computational code for the numerical integration of the three-dimensional Navier–Stokes equations in their non-dimensional velocity–pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral–finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank–Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge–Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain. Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, the explicit first order upwind scheme is presented under a formalism that enables the extension of the methodology to large time steps. The number of cells in the stencil of the numerical scheme is related to the allowable size of the CFL number for numerical stability. It is shown how to increase both at the same time. The basic idea is proposed for a 1D scalar equation and extended to 1D and 2D non‐linear systems with source terms. The importance of the kind of grid used is highlighted and the method is outlined for irregular grids. The good quality of the results is illustrated by means of several examples including shallow water flow test cases. The bed slope source terms are involved in the method through an upwind discretization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A new efficient numerical method for three-dimensional hydrodynamic computations is presented and discussed in this paper. The method is based on the operator splitting method and combined with Eulerian–Lagrangian method, finite element method and finite difference method. To increase the efficiency and stability of the numerical solutions, the operator splitting method is employed to partition the momentum equations into three parts, according to physical phenomena. A time step is divided into three time substeps. In the first substep, advection and Coriolis force are solved using the explicit Eulerian–Lagrangian method. In the second substep, horizontal diffusion is approximated by implicit FEM in each horizontal layer. In the last substep, the continuity equation is solved by implicit FEM, and vertical diffusion and pressure gradient are discretized by implicit FDM in each nodal column. The stability analysis shows that this method is unconditionally stable. A number of numerical experiments have been performed. The results simulated by the present scheme agree well with analytical solutions and the other documented model results. The method is efficient for 3D shallow water flow computations and fully fits complicated configurations. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper a new type of transient multidimensional two-fluid model has been applied to simulate intermittent or slug flow problems. Three different approaches to modelling interfacial friction, including an interfacial tracking scheme, have been investigated. The numerial method is based on an implicit finite difference scheme, solved directly in two steps applying a separate equation for the pressure. 2D predictions of Taylor bubble propagation in horizontal and inclined channels have been compared with experimental data and analytical solutions. The 2D model has also been applied to investigate a number of special phenomena in slug flow, including slug initiation, bubble turning in downflow and the bubble centring process at large liquid flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号