首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We consider matrix materials reinforced with multiple phases of coated inclusions. All materials are linear viscoelastic. We present general schemes for the prediction of the effective properties based on mean-field homogenization. There are four contributions in this work. First, we present a two-step homogenization procedure in a general setting which besides the usual assumptions of Eshelby-based models, does not suffer any restriction in terms of material properties, aspect ratio or orientation. Second, for a matrix reinforced with coated inclusions, we propose two general homogenization schemes, a two-step method and a two-level recursive scheme. We develop and compare the mathematical expressions obtained by the two schemes and a generalized Mori–Tanaka (M–T) model. Third, for a two-phase composite, either standalone or stemming from two-step or two-level schemes, we use a double-inclusion model based on a closed-form but non-trivial interpolation between M–T and inverse M–T estimates. Fourth, we conduct an extensive validation of the proposed schemes as well as others against experimental data and unit cell finite element simulations for a variety of viscoelastic composite materials. Under severe conditions, the proposed schemes perform much better than other existing homogenization methods.  相似文献   

2.
We develop homogenization schemes and numerical algorithms for two-phase elasto-plastic composite materials and structures. A Hill-type incremental formulation enables the simulation of unloading and cyclic loadings. It also allows to handle any rate-independent model for each phase. We study the crucial issue of tangent operators: elasto-plastic (or “continuum”) versus algorithmic (or “consistent”), and anisotropic versus isotropic. We apply two methods of extraction of isotropic tangent moduli. We compare mathematically the stiffnesses of various tangent operators. All rate equations are discretized in time using implicit integration. We implemented two homogenization schemes: Mori–Tanaka and a double inclusion model, and two plasticity models: classical J2 plasticity and Chaboche’s model with non-linear kinematic and isotropic hardenings. We consider composites with different properties and present several discriminating numerical simulations. In many cases, the results are validated against finite element (FE) or experimental data. We integrated our homogenization code into the FE program ABAQUS using a user material interface UMAT. A two-scale procedure allows to compute realistic structures made of non-linear composite materials within reasonable CPU time and memory usage; examples are shown.  相似文献   

3.
Moiré interferometry is utilized to investigate the time-temperature-dependent deformation of a woven composite substrate used in multilayer circuit board applications. Creep tests are performed at temperatures ranging from 27 to 70°C, and the resulting longitudinal and transverse displacement fields are measured via moiré interferometry. Measured displacement fields reveal the influence of fabric architecture on woven composite response. The deformation fields in the plane of the composite for loading along both warp and fill directions consist of a periodic arrangement of high-strain and low-strain regions in accordance to the interlacing bundle architecture. The deformation fields over the cross-section of the composite indicate that neighboring unit cells are subjected to equal and opposite bending moment even when the composite is loaded in uniaxial tension.  相似文献   

4.
A new material tailoring method for spherical and cylindrical vessels made of functionally graded materials (FGMs) is presented. It is assumed that the FG material is composed of an Al–SiC metallic-matrix composite. A uniform ratio of in-plane shear stress to yield strength [\(\varphi \left( r \right) \)] is used as the design criterion to utilize the maximum capacity of the vessel. The aim is to find a distribution of SiC particles in the radial direction, i.e., \(f\left( r \right) \), that achieves a uniform index \(\varphi \left( r \right) =\hbox {const}.\) through the wall thickness of the internally pressurized spherical or cylindrical vessel. Both the Mori–Tanaka and rule-of-mixtures homogenization schemes are used to express the effective elastic module and Poisson’s ratio. Moreover, the strength of the composite is expressed based on the rule of mixtures. Besides, finite element simulation is carried out to verify the accuracy of the analytical solution. The effects of input parameters such as the internal pressure, strength of the SiC particles, ratio of in-plane shear stress to effective yield strength, and choice of homogenization scheme on the tailored distribution of the SiC volume fraction in the radial direction are also investigated.  相似文献   

5.
含柔性涂层的颗粒增强复合材料弹性模量估计   总被引:5,自引:1,他引:4  
仲政 《固体力学学报》2000,21(4):350-354
采用线弹簧型弱界面模型来模拟柔性涂层,研究柔性涂层对复合材料宏观弹性模量的影响。首先利用Mori-Tanaka方法和弱界面球形夹杂问题的弹性解,获得单夹杂内部的平均应力和平均应变,进而求得具有柔性涂层的复合材料的宏观弹性模量,并研究界面柔度对复合材料弹性模量的影响。  相似文献   

6.
A micromechanical model for cementitious composite materials is described in which microcrack initiation, in the interfacial transition zone between aggregate particles and cement matrix, is governed by an exterior-point Eshelby solution. The model assumes a two-phase elastic composite, derived from an Eshelby solution and the Mori–Tanaka homogenization method, to which circular microcracks are added. A multi-component rough crack contact model is employed to simulate normal and shear behaviour of rough microcrack surfaces. The development of the microcrack initiation criterion and the rules adopted for microcrack evolution are a particular focus of the paper. Finally, it is shown, on the basis of several numerical simulations, that the model captures key characteristics of the behaviour of cementitious composites such as concrete.  相似文献   

7.
复合材料周期性线弹性微结构的拓扑优化设计   总被引:16,自引:4,他引:16  
提出复合材料周期性线弹性微结构拓扑优化设计的模型,模型1设计具有极值弹性特性的复合材料,模型2设计工况最刚微结构单胞。通过该模型和均匀化技术可以获得优化的微结构单胞,进而改善或者得到最优宏观特性的复合材料。为了便于制造和应用,用胞体材料而不是多相材料来得到复合材料的极值弹性特性和最大刚度。优化结果表明,该模型与数值方法相结合可以有效地实现微结构的拓扑优化设计。  相似文献   

8.
微观结构对复合材料的宏观力学性能具有至关重要的影响, 通过合理设计复合材料微观结构可以得到期望的宏观性能. 均质化方法作为一种有效的设计方法, 它从微观结构的角度出发, 利用均匀化的概念, 实现了对复合材料宏观力学性能的预测和设计. 而当考虑非线性因素, 均质化的实现就非常困难. 本文利用双渐近展开方法, 将位移按照宏观位移和微观位移展开, 推导了非线性弹性均质化方程. 通过直接迭代法, 对非线性弹性均质化方程进行了求解, 并给出了具体的迭代方法和实现步骤. 本文基于迭代步骤和非线性弹性均质化方程编写MATLAB 程序, 对3种典型本构关系的周期性多孔材料平面问题进行了计算, 对比细致模型的应变能、最大位移和等效泊松比, 对程序及迭代方法的准确性进行了验证. 之后对一种三元橡胶基复合材料进行多尺度均质化, 将其分为芯丝尺度和层间尺度. 用线弹性的均质化方法得到了芯丝尺度的等效弹性参数, 并将其作为层间尺度的材料参数. 在层间尺度应用非线性弹性均质化方法对结构进行计算, 得到材料的宏观等效性能, 并以实验结果为基准进行评价.   相似文献   

9.
This paper discusses evaluation of influence of microscopic uncertainty on a homogenized macroscopic elastic property of an inhomogeneous material. In order to analyze the influence, the perturbation-based homogenization method is used. A higher order perturbation-based analysis method for investigating stochastic characteristics of a homogenized elastic tensor and an equivalent elastic property of a composite material is formulated.As a numerical example, macroscopic stochastic characteristics such as an expected value or variance, which is caused by microscopic uncertainty in material properties, of a homogenized elastic tensor and homogenized equivalent elastic property of unidirectional fiber reinforced plastic are investigated. The macroscopic stochastic variation caused by microscopic uncertainty in component materials such as Young’s modulus or Poisson’s ratio variation is evaluated using the perturbation-based homogenization method. The numerical results are compared with the results of the Monte-Carlo simulation, validity, effectiveness and a limitation of the perturbation-based homogenization method is investigated. With comparing the results using the first-order perturbation-based method, effectiveness of a higher order perturbation is also investigated.  相似文献   

10.
In this paper, an iterative homogenization method is proposed in order to predict the behavior of polydispersed materials. Various families of heterogeneities according to their geometrical or mechanical properties are progressively introduced into a volume of matrix. At each step, the behavior of intermediate medium is obtained by any analytical homogenization method and is used as matrix of the following step. All homogenization methods, like dilute strain or stress approximations, Hashin’s bounds, three phases method, Mori–Tanaka’s approach or for example the N-layered inclusions method lead to the same effective behavior for the polydispersed material after convergence of the iterative process. Moreover, this convergence is obtained even for significant fractions of heterogeneities and for highly contrasted or polydispersed materials. This method is applied to various composites and validated by comparison with other modellings and experimental results.  相似文献   

11.
The present work is concerned with the determination of the effective thermal conductivity of porous rocks or rock-like composites composed by multiple solid constituents, in partially saturated conditions. Based on microstructure observations, a two-step homogenization scheme is developed: the first step for the solid constituents only, and the second step for the (already homogenized) solid matrix and pores. Several homogenization schemes (dilute, Mori–Tanaka, the effective field method and Ponte Castañeda–Willis technique) are presented and compared in this context. Such methods are allowing: (i) to incorporate in the modellization the physical parameters (mineralogy, morphology) influencing the effective properties of the considered material, and the saturation degree of the porous phase; (ii) to account for interaction effects between matrix and inhomogeneities; (iii) to consider different spatial distributions of inclusions (spherical, ellipsoïdal). An orientation distribution function (ODF) permits simultaneously to incorporate in the modelling the transverse isotropy of pore systems. Appearing as homogeneous at the macroscopic scale, it is showed that the effective conductivity depends on the physical properties of all subsidiary phases (microscopic inhomogeneities). By considering the solution of a single ellipsoïdal inhomogeneity in the homogenization problem it is possible to observe the significant influence of the geometry, shape and spatial distribution of inhomogeneities on the effective thermal conductivity and its dependence with the saturation degree of liquid phase. The predictive capacities of the two-step homogenization method are evaluated by comparison with experimental results obtained for an argillite.  相似文献   

12.
The paper presents a cantilevered composite wing, aeroelastic characteristics of idealized as a composite flat plate laminate. The composite laminate was made from woven glass fibers with epoxy matrix. The elastic and dynamic properties of the laminate were determined experimentally for aeroelastic calculations. Aeroelastic wind tunnel testing of the laminate was performed and the result showed that flutter, a dynamic instability occurred. The cantilevered laminate also displayed limit cycle amplitude, post-flutter oscillation. The experimental flutter velocity and frequency were verified by our computational analysis.  相似文献   

13.
Static and free vibration analyses of plates with circular holes are performed based on the three-dimensional theory of elasticity. The plates are made of a functionally graded material (FGM), and the volume fractions of the constituent materials vary continuously across the plate. The effective properties of the FGM plate are estimated by using the Mori–Tanaka homogenization method. A graded finite element method based on the Rayleigh–Ritz energy formulation is used to solve the problem. Effects of different volume fractions of the materials and hole sizes on the behavior of FGM plates under uniaxial tension are investigated. Natural frequencies of a fully clamped FGM plate with a circular cutout are derived. The results obtained are compared with available experimental data.  相似文献   

14.
In this work, a modeling of electroelastic composite materials is proposed. The extension of the heterogeneous inclusion problem of Eshelby for elastic to electroelastic behavior is formulated in terms of four interaction tensors related to Eshelby’s electroelastic tensors. Analytical formulations of interaction tensors are presented for ellipsoidal inclusions. These tensors are basically used to derive the self-consistent model, Mori–Tanaka and dilute approaches. Numerical solutions are based on numerical computations of these tensors for various types of inclusions. Using the obtained results, effective electroelastic moduli of piezoelectric multiphase composites are investigated by an iterative procedure in the context of self-consistent scheme. Generalised Mori–Tanaka’s model and dilute approach are re-formulated and the three models are deeply analysed. Concentration tensors corresponding to each model are presented and relationships of effective coefficients are given. Numerical results of effective electroelastic moduli are presented for various types of piezoelectric inclusions and for various orientations and compared to existing experimental and theoretical ones.  相似文献   

15.
Thermoelastic problem for a composite solid with initial stresses is considered on the basis of the asymptotic homogenization method. The homogenized model is constructed by means of the two-scale asymptotic homogenization techniques. The major result of a present paper is that the effective (homogenized) thermoelastic characteristics of the composite material depend not only on local distributions of all types of material characteristics: local elastic properties, local thermoelastic properties, but also on local initial stresses. Therefore it is shown that for the inhomogeneous (composite) material local initial stresses contribute towards values of the effective characteristics of the material. This kind of interaction is not possible for the homogeneous materials. From the mathematical viewpoint, the asymptotic homogenization procedure is equivalent to the computation of G-limit of the corresponding operator. And the above noted phenomenon is based on the fact that in the considering case the G-limit of a sum is not equal to the sum of G-limits. The developed general homogenized model is illustrated in the particular case of the small initial stresses, which is common for the practical mechanical problems. The explicit formulas for the effective thermoelastic characteristics and numerical results are obtained for a laminated composite solid with the initial stresses.  相似文献   

16.
The present study is devoted to the development and validation of a nonlinear homogenization approach of the mechanical behavior of Callovo-Oxfordian argillites. The material is modeled as an heterogeneous composite composed of an elastoplastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is obtained by adapting the incremental method proposed by Hill [Hill, R., 1965. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101]. The approach consists in formulating the macroscopic tangent operator of the material by considering the nonlinear local behavior of each phase. Due to the matrix/inclusion morphology of the microstructure of the argillite, a Mori–Tanaka scheme is considered for the localization step. The developed model is first compared to Finite Element calculations and then validated and applied for the prediction of the macroscopic stress–strain responses of argillites.  相似文献   

17.
纤维增强复合材料弹性性能预测的域分解方法及应用   总被引:1,自引:0,他引:1  
李明  陈秀华 《应用力学学报》2012,29(3):235-241,349
提出了新的有限元建模方法,即域分解方法,用于预测纤维增强复合材料单向带T300/BSL914C(环氧树脂)和AS4/3501-6(环氧树脂)的弹性性能。域分解方法基于区域叠合技术,分别建立单胞的整体域与纤维域模型用于代替传统有限元建模方法中单胞的基体域与纤维域模型。整体域是真实基体体积与纤维体积的叠加,两区域网格独立划分,互不影响。采用MSC.Nastran中的多节点约束Explicit单元,在整体域与纤维域节点之间建立位移连接属性模拟单胞基体域与纤维域之间的位移约束关系,从而实现两区域的耦合计算。计算结果表明:域分解方法单胞模型纤维增强方向弹性模量Ez预测值与试验值误差在7%以内,其余弹性常数也都与试验值吻合较好。域分解方法不仅可以大大简化纤维增强复合材料的细观力学建模,而且可以准确地预测纤维增强复合材料的弹性性能。  相似文献   

18.
复合材料扭转轴截面微结构拓扑优化设计   总被引:5,自引:1,他引:5  
袁振  吴长春 《力学学报》2003,35(1):39-42
提出复合材料扭转轴截面微结构拓扑优化设计新模型,模型的优化目标是获得具有最大宏观剪切特性加权和的单胞形式.通过模型和均匀化方法及优化技术可以获得优化的微结构单胞,进而改善或者得到最优宏观弹性特性的复合材料.为了便于制造和应用,胞体材料用来获得复合材料的极值剪切模量.最后的优化结果表明,该模型连同数值处理技巧可以非常有效地实现微结构的拓扑优化设计.  相似文献   

19.
A synergistic stiffening effect observed in the elastic mechanical properties of LBL assembled polymer/clay nanocomposites is studied via two continuum mechanics approaches. The nanostructure of the representative volume element (RVE) includes an effective interphase layer that is assumed to be perfectly bonded to the particle and matrix phases. An inverse method to determine the effective thickness and stiffness of the interphase layer using finite element (FE) simulations and experimental data previously published in Kaushik et al. (2009), is first illustrated. Next, a size-dependent strain gradient Mori–Tanaka (M–T) model (SGMT) is developed by applying strain gradient elasticity to the classical M–T method. Both approaches are applied to LBL-assembled polyurethane–montmorillonite (PU–MTM) clay nanocomposites. Both two-dimensional (2D) and three-dimensional (3D) FE models used in the first approach are shown to be able to accurately predict the stiffness of the PU–MTM specimens with various volume fractions. The SGMT model also accurately predicts the experimentally observed increase in stiffness of the PU–MTM nanocomposite with increasing volume fraction of clay. An analogy between the strain gradient effect and the role of an interphase in accounting for the synergistic elastic stiffening in nanocomposites is provided.  相似文献   

20.
HOMOGENIZATION—BASED TOPOLOGY DESIGN FOR PURE TORSION OF COMPOSITE SHAFTS   总被引:1,自引:0,他引:1  
In conjunction with the homogenization theory and the finite element method, the mathematical models for designing the corss-section of composite shafts by maximizing the torsion rigidity are developed in this paper. To obtain the extremal torsion rigidity, both the cross-section of the macro scale shaft and the representative microstructure of the composite material are optimized using the new models. The micro scale computational model addresses the problem of finding the periodic microstructures with extreme shear moduli. The optimal microstructure obtained with the new model and the homogenization method can be used to improve and optimize natural or artificial materials. In order to be more practical for engineering applications, cellular materials rather than ranked materials are used in the optimal process in the existence of optimal bounds for the elastic properties. Moreover, the macro scale model is proposed to optimize the cross-section of the torsional shaft based on the tailared composites. The validating optimal results show that the models are very effective in obtaining composites with extreme elastic properties, and the cross-section of the composite shaft with the extremal torsion rigidity. The project supported by the National Natural Science Foundation of China (10172078 and 10102018)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号