首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于光滑粒子流体动力学SPH(Smoothed Particle Hydrodynamics)方法对Oldroyd-B黏弹性液滴撞击固壁面产生的弹跳行为进行了模拟与分析。首先,为了解决SPH模拟黏弹性自由表面流出现的张力不稳定性问题,联合粒子迁移技术提出了一种改进SPH方法。然后,对Oldroyd-B黏弹性液滴撞击固壁面产生的铺展行为进行了改进SPH模拟,与文献结果的比较验证了方法的有效性。最后,通过降低Reynolds数捕捉到了液滴的弹跳行为;并在此基础上,分析了液滴黏度比、Weissenberg数和Reynolds数对液滴弹跳行为的影响。结果表明,改进SPH方法可有效地模拟黏弹性自由表面流问题;液滴黏度比、Weissenberg数和Reynolds数对液滴最大回弹高度均有显著的影响。  相似文献   

2.
复杂的流变特性使凝胶推进剂的雾化过程存在一定困难,这制约了它的发展.聚合物胶凝剂的加入使凝胶推进剂具有黏弹性,从而在雾化时会产生黏弹性液滴,因此为了进一步认识凝胶推进剂的雾化机理、提高凝胶推进剂的雾化性能,对黏弹性液滴的碰撞行为进行数值模拟研究.针对凝胶推进剂雾化过程中出现的液滴撞击现象,考虑流体具有的黏弹性效应,采用...  相似文献   

3.
In this article, a smoothed particle hydrodynamics method is developed to simulate the dynamic process of the impact of two viscoelastic droplets onto a rigid plate. The Oldroyd-B fluid is considered as the rheological model to describe the viscoelastic characteristics. An artificial stress is added into the momentum equation to remove the tensile instability. The solution of the problem of two successive impacts of droplets are demonstrated to be in good agreement with the literature data. The problem of two droplets impacting simultaneously onto a rigid plate is investigated.  相似文献   

4.
研究生物材料力学性质是生物力学的重要内容之一.测量材料粘弹性性质的传统方渗是单轴拉伸松弛或蠕变实验.与传统方法不同,为了测量鱼体材料粘弹性性质,本文设计了一种用于测量鱼体材料性质的弯曲变形试验机,通过模拟鱼体摆动,可以测得鱼体材料的储能模量、耗散模量、滞后相位角等参数.通过弹性体(铜片)和粘弹性体(橡胶)材料实验验证了...  相似文献   

5.
Numerical simulation of primary atomization at high Reynolds number is still a challenging problem. In this work a multiscale approach for the numerical simulation of liquid jet primary atomization is applied, using an Eulerian-Lagrangian coupling. In this approach, an Eulerian volume of fluid (VOF) method, where the Reynolds stresses are closed by a Reynolds stress model is applied to model the global spreading of the liquid jet. The formation of the micro-scale droplets, which are usually smaller than the grid spacing in the computational domain, is modelled by an energy-based sub-grid model. Where the disruptive forces (turbulence and surface pressure) of turbulent eddies near the surface of the jet overcome the capillary forces, droplets are released with the local properties of the corresponding eddies. The dynamics of the generated droplets are modelled using Lagrangian particle tracking (LPT). A numerical coupling between the Eulerian and Lagrangian frames is then established via source terms in conservation equations. As a follow-up study to our investigation in Saeedipour et al. (2016a), the present paper aims at modelling drop formation from liquid jets at high Reynolds numbers in the atomization regime and validating the simulation results against in-house experiments. For this purpose, phase-Doppler anemometry (PDA) was used to measure the droplet size and velocity distributions in sprays produced by water jet breakup at different Reynolds numbers in the atomization regime. The spray properties, such as droplet size spectra, local and global Sauter-mean drop sizes and velocity distributions obtained from the simulations are compared with experiment at various locations with very good agreement.  相似文献   

6.
An experimental study was performed to improve the understanding of the characteristics of ultrasonic water atomization when excited with waves in the MHz range. In the present experiments, small volumes of water were atomized, observing the temporal evolution of the process. Typical diameters of the resulting droplets are of the order of a few microns. To visualize them, images were acquired with very high magnification. Appropriate lenses were used to enable high resolution at a distance from the flow. Droplet size distributions were also calculated with a Malvern diffractometer. Droplet exit velocity was measured using particle image velocimetry. It was noticeable that, as the remaining liquid mass deposited over the ultrasonic transducer decreased, the atomization characteristics changed, and a second peak of larger droplets appeared in the size distribution function. This phenomenon is related to the change in the curvature of the liquid surface. Although results are not conclusive, it appears that, under the conditions in this study, some observations about droplet formation are better described by cavitation phenomena rather than by the simplified surface wave theory usually invoked to explain these processes.  相似文献   

7.
Surface tension plays a significant role at the dynamic interface of free‐surface flows especially at the microscale in capillary‐dominated flows. A model for accurately predicting the formation of two‐dimensional viscous droplets in vacuum or gas of negligible density and viscosity resulting from axisymmetric oscillation due to surface tension is solved using smoothed particle hydrodynamics composed of the Navier‐Stokes system and appropriate interfacial conditions for the free‐surface boundaries. The evolution of the droplet and its free‐surface interface is tracked over time to investigate the effects of surface tension forces implemented using a modified continuous surface force method and is compared with those performed using interparticle interaction force. The dynamic viscous fluid and surface tension interactions are investigated via a controlled curvature model and test cases of nonsteady oscillating droplets; attention is focused here on droplet oscillation that is released from an initial static deformation. Accuracy of the results is attested by demonstrating that (i) the curvature of the droplet that is controlled; (ii) uniform distribution of fluid particles; (iii) clean asymmetric forces acting on the free surface; and (iv) nonsteady oscillating droplets compare well with analytical and published experiment findings. The advantage of the proposed continuous surface force method only requires the use of physical properties of the fluid, whereas the interparticle interaction force method is restricted by the requirement of tuning parameters.  相似文献   

8.
The rapid diffusion of nanoparticles(NPs) through mucus layer is critical for efficient transportation of NPs-loaded drug delivery system. To understand how the physical and surface properties of NPs affect their diffusion in mucus, we have developed a coarse-grained molecular dynamics model to study the diffusion of NPs in modeled mucus layer. Both steric obstruction and hydrodynamic interaction are included in the model capable of capturing the key characteristics of NPs' diffusion in mucus. The results show that both particle size and surface properties significantly affect the diffusivities of NPs in mucus. Furthermore, we find rodlike NPs can gain a higher diffusivity than spherical NPs with the same hydrodynamic diameter. In addition, the disturbed environment can enhance the diffusivity of NPs. Our findings can be utilized to design mucus penetrating NPs for targeted drug delivery system.  相似文献   

9.
A novel hydrodynamic effect, namely, slow contactless motion of a heavy spherical particle along an inclined wall, accompanied by the formation of a finite particle–wall clearance under the action of a cavitation-induced lift force, is investigated. Similarity parameters controlling the particle motion, determined using the dimensionality theory, are validated experimentally. These parameters are related to the atmospheric pressure, the surface tension on the liquid–air interface, the density of the air dissolved in the fluid, the particle weight in the fluid, and the viscoelastic properties of the fluid.This paper was presented at the AERC 2005.  相似文献   

10.
吕明  宁智  孙春华 《力学学报》2016,48(4):857-866
超空化燃油射流使得喷雾中部分燃油分裂液滴内含有空化气泡;空化气泡的生长及溃灭对液滴的分裂与雾化具有重要影响. 基于VOF 方法首次对超空化条件下燃油液滴内空化气泡的生长及溃灭过程进行了数值模拟. 通过研究发现,单液滴内空化气泡的生长过程可以按控制机理划分为表面张力控制阶段、综合竞争阶段和惯性力控制阶段;在第I 阶段,空泡的生长主要受表面张力的控制作用,惯性力对空泡生长的促进作用及黏性力对空泡生长的抑制作用可以忽略;在第II 阶段,空泡的生长受表面张力、惯性力及黏性力三者的综合作用,空泡的生长速率是促进空泡生长的惯性力和抑制空泡生长的表面张力及黏性力相互竞争、共同作用的结果;在第III 阶段,空泡的生长主要受惯性力的控制作用,抑制空泡生长的表面张力及黏性力的作用基本可以忽略. 单液滴内空化气泡的溃灭过程由多个溃灭阶段和反弹阶段构成,类似于有阻尼弹簧振子的振动过程;根据每个溃灭周期结束时空泡半径随时间的变化历程,可以将空泡的溃灭分为快速溃灭期、缓慢溃灭期以及稳定期;溃灭初期空泡溃灭压力的变化非常剧烈,但空泡溃灭体积的变化则要相对平缓得多;空泡反弹压力随时间的变化与空泡反弹体积随时间的变化基本对应.   相似文献   

11.
An experimental study of two-phase turbulent coaxial jets   总被引:1,自引:0,他引:1  
The effect of solid particles on the flow structure of axisymmetric turbulent coaxial jets has been studied. A laser-Doppler anemometer was used to measure the mean and fluctuation velocities of both phases, and a Malvern laser diffraction instrument was applied to measure particle size and concentration. A series of velocity ratios and particle loading ratios were investigated, and the results were analysed for the effects of these ratios on the mixing characteristic and the similarity behavior of the jet. The effects of particle diameter and its distribution were also studied as well as their influence on the coaxial jet behavior.  相似文献   

12.
13.

Because of their great economic and social impact, coffee plants have become the center of interest in different fields of study, from biology to medical sciences. In this work, the determination of the poro-viscoelastic behavior of coffee leaves as a function of moisture content is presented. Destructive stress relaxation tests in tension and indentation were carried out, which showed that the rheological response of the leaf samples is mainly governed by the viscoelastic properties. Finite element poro-elastic models, in which the intrinsic viscoelasticity of the solid phase is modeled using Prony series, were also implemented in order to emulate the observed experimental behavior. Results allowed us to state that as the moisture content is diminished, the stiffness of the vegetable tissue decreases and its viscoelastic properties are increased. This is attributed to the loss of turgor pressure (mechanical stability) and the formation of empty spaces when leaf samples lose water. The moduli of elasticity obtained from the tension tests were greater (18–36 MPa) than those measured for the samples subjected to indentation (2–5 MPa). The equivalent viscoelastic parameter was between 0.36 and 0.53 for tension and between 0.76 and 0.90 for indentation.

  相似文献   

14.
The surface concentration on the liquid side of the interface of an evaporating multicomponent droplet could be different from the bulk concentration. In this work, surface tension is used as a means to measure surface concentration of an evaporating multicomponent droplet. Surface tension is measured using pendant droplet method that relies on the best fit between theoretical and experimental drop profiles. Surface tension is a surface property, and it exhibits a dependence on concentration. Hence, it is an ideal candidate to track the variation of surface concentration during the evaporation of a multicomponent droplet. This method is used to study the evaporation of ethanol–water and methanol–water droplets. The correctness and applicability of this technique are critically assessed, and important observations are made for single droplet evaporation for these binary mixtures.  相似文献   

15.
Understanding the shear breakup in jet flows and the formation of droplets from ligaments is important to determine the final droplet size distribution (DSD). The initial droplet size, which affects the final DSD, is considered to be generated by the shear breakup. Large eddy simulation (LES) was performed to investigate the shear breakup in liquid-liquid jet flows. The explicit Volume of Fluid (VOF) model with the geometric reconstruction scheme was used to capture the oil-water interface. The estimated oil distribution including wave peaks, ligaments, droplets and water streaks were compared to the experiments with a good agreement. The estimated DSD matched with the measurements favorably well. In the simulation, the formation of droplets with a smooth and curved surface from ligaments or sheet-like structures was obtained. Different mechanisms were observed along with the shear layer including the formation of droplets from ligament through the capillary forces, breakage of a droplet into smaller ones and attachment of a droplet to a ligament. The destructive shear forces and resisting surface tension forces were quantified on stretching and retracting ligaments. The influence of internal viscous force was found to be negligible due to low oil viscosity. The critical capillary number was found to be larger than 5.0 for ligaments breaking with the shear breakup. The capillary number was below unity for retracting ligaments. The coalescence of two equal-sized droplets was obtained in the shear breakup region. The shear stress magnitude at the contact region increased more than two folds. The total surface area decreased nearly 20% after the coalescence.  相似文献   

16.
采用光滑粒子动力学SPH方法建立液滴冲击弹性基底的流固耦合数值模型,给出描述粘性流体和弹性固体运动的SPH离散方程和数值处理格式,引入人工耗散项来抑制标准SPH方法的数值震荡。为模拟液滴的表面张力效应,通过精确检测边界粒子,采用拉格朗日插值方法计算表面法向量和曲率,结合界面理论中的连续表面力CSF方法,建立了适用于自由表面液滴的表面力模型,方形液滴变形的模拟结果与拉普拉斯理论解吻合较好。随后,采用SPH流固耦合模型模拟1.0 mm直径水滴以不同速度(0.2 m/s~3.0 m/s)冲击两种薄板型基底,分析了基底弹性变形对液滴铺展、收缩以及回弹行为的影响。  相似文献   

17.
A hybrid particle‐mesh method was developed for efficient and accurate simulations of two‐phase flows. In this method, the main component of the flow is solved using the constrained interpolated profile/multi‐moment finite volumemethod; the two‐phase interface is rendered using the finite volume particle (FVP) method. The effect of surface tension is evaluated using the continuum surface force model. Numerical particles in the FVP method are distributed only on the surface of the liquid in simulating the interface between liquid and gas; these particles are used to determine the density of each mesh grid. An artificial term was also introduced to mitigate particle clustering in the direction of maximum compression and sparse discretization errors in the stretched direction. This enables accurate interface tracking without diminishing numerical efficiency. Two benchmark simulations are used to demonstrate the validity of the method developed and its numerical stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a numerical solution for Saffman–Taylor instability of immiscible nonlinear viscoelastic-Newtonian displacement in a Hele–Shaw cell is presented. Here, a nonlinear viscoelastic fluid pushes a Newtonian fluid and the volume of fluid method is applied to predict the formation of two phases. The Giesekus model is considered as the constitutive equation to describe the nonlinear viscoelastic behavior. The simulation is performed by a parallelized finite volume method (FVM) using second order in both the spatial and the temporal discretization. The effect of rheological properties and surface tension on the immiscible Saffman–Taylor instability are studied in detail. The destabilizing effect of shear-thinning behavior of nonlinear viscoelastic fluid on the instability is studied by changing the mobility factor of Giesekus model. Results indicate that the fluid elasticity and capillary number decrease the intensity of Saffman–Taylor instability.  相似文献   

19.
In this study, the whole process of liquid droplet impact onto a liquid surface up to the consequent formation of the central column was simulated using the smoothed particle hydrodynamics method (SPH), and compared with an experiment using a high‐speed video camera. The surface tension tensor for the particle‐based expression was adequately included as the gradient of the surface tension and that enabled the simulation leading to the formations of crater and crown as well as the consequent central column. The simulated time series of the crater depth and diameter and crown height corresponded quantitatively well with the experimental result up to the rebound motion while discrepancies remained as a lower central column height in the simulation, and this seemed to be ascribed to the difficulty in realizing the complex surface structure that inevitably appeared in the fast rebound motion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This paper provides information on the microstructure of, and reports particle size distributions and rheological results for, aqueous dispersions of spray-dried egg yolk and xanthan gum prepared on a laboratory scale using two types of homogenisers. Laser light scattering results demonstrated that higher energy input during homogenisation yielded a dispersion with a lower average particle size and a wider polydispersity, slightly influencing the linear dynamic viscoelastic functions due to the low concentration of egg yolk particles. These dispersions exhibited weak gel properties at the composition studied. The mechanical spectrum and the corresponding relaxation spectrum were dominated by the xanthan/gum-water matrix which controls the structure of the continuous phase. This fact explained the lack of any wall depletion effects. Several controlled-rate and controlled-stress rotational rheometers and a capillary rheometer were used to obtain information on flow properties. The shear rate dependence of steady state viscosity was determined through twelve decades, and was fitted using the Carreau equation. The kinetics of structural recovery after steady-state shear was studied by start-up at the inception of shear and flow interrupted experiments under controlled shear history. The results were analysed in terms of the ratio of a time-dependent amount of overshoot to the amount of overshoot of the original sample, using the addition of two first order equations. Additionally, combined steady state flow properties at fixed shear stress/oscillatory shear experiments were also used. The increase of the storage modulus with time, checking a linear viscoelastic response, tracked the structural recovery after steady shear. Laser light scattering of sheared samples helped gain a better understanding of the role of egg yolk particles on the rheology of these dispersions. Received: 6 February 2000 Accepted: 5 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号