首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
杨帆  岳珠峰  李磊 《应用力学学报》2015,(1):119-124,177-178
作为飞机上重要的承载部件,加筋壁板在发生初始屈曲后仍具有较强的后屈曲承载能力,因此研究其后屈曲特性对于确定破坏载荷具有重要意义。传统的特征值屈曲分析是以小位移小应变的线弹性理论为基础的,且不考虑结构在受载过程中结构构形的变化,因此误差较大。本文采用Riks弧长法,结合材料弹塑性理论对铝合金整体加筋壁板轴压加载后的屈曲破坏过程、传载机制、极限载荷进行了研究,并进行了轴压加载的试验验证,得到了加载过程中的应力、应变曲线以及极限载荷,还对后屈曲破坏形式进行了分析。数值模拟结果表明:本文研究的整体加筋板初始屈曲发生在蒙皮,后屈曲过程筋条是主要的承载部位,与试验中观察到的现象一致;试验中加筋板最终破坏部位发生在筋与蒙皮连接处,有限元模拟结果与试验中加筋板的最终破坏部位一致;数值模拟得到的极限载荷与试验的相对误差在5%以内。这表明基于弧长法的后屈曲计算能够准确跟踪整体加筋板的后屈曲平衡路径和预测极限载荷。  相似文献   

2.
复合材料加筋结构可作为航空结构中的承力部件,其损伤与破坏对航空器的结构安全和服役性能至关重要.本文通过试验和数值仿真手段研究了短柱型复合材料结构压缩失效机理和极限承载力.通过短柱型单加筋板的轴向压缩破坏试验,分析梳理出界面脱粘和材料压溃两种典型失效形式;分别建立加筋板壳单元模型和实体单元模型,引入内聚力模型和Hashin 准则描述界面脱粘效应与材料破坏,结果表明壳单元模型配合内聚力模型和Hashin 准则可以有效地预测加筋板的极限承载力.分别讨论了加筋板长度、筋条高度、筋条/蒙皮刚度比等参数对加筋板的屈曲承载力的影响,为短柱型复合材料加筋壁板压缩损伤与破坏预测分析提供有益的参考.  相似文献   

3.
在复合材料结构整个屈曲承载过程中,从微观开始发生局部的纤维断裂、基体微裂纹等损伤,并随着屈曲程度的增加和屈曲模式的转化逐渐发生分层扩展。采用实验与数值计算相结合的方法,本文研究了工字型加筋壁板复合材料结构在压缩载荷作用下的屈曲行为。采用无损光学手段来非接触检测壁板表面的全场屈曲挠度,捕捉屈曲模态演化过程。基于有限元的数值模拟,预测了工字型加筋壁板复合材料结构的屈曲与后屈曲行为,用定量的实验数据来对比数值预测的壁板屈曲形态,表明实验和数值结果的离面挠度分布具有一致性。  相似文献   

4.
一、前言目前一些关于离散加筋园柱曲板的稳定性计算(文献[1][2][3])均忽略了筋条抗扭刚度。这样可以利用矩阵零元素多的特征将矩阵分解成数个子矩阵,减少矩阵阶数,提高计算速度和计算精度。但是,筋条抗扭刚度对离散加筋园柱曲板总体稳定性到底影响多大,特别是当筋条的横截面是闭口薄壁剖面时(这种情况下其扭转刚度与抗弯刚度是同量级的)是否还可以忽略其扭转刚度?此外当筋条较强,局部屈曲临界载荷小于总体屈曲临界载荷时,计算曲线与实验不符,这是否由于忽略了筋条扭转刚度造成的呢?这些问题需要回答。   相似文献   

5.
为简化正交各向异性加筋板屈曲分析,本文将筋条位移场用其所在位置的板的位移表达,建立加筋板总势能,通过离散位移场,利用最小势能原理,推导出基于里兹法的正交各向异性加筋板屈曲分析控制方程,采用Matlab进行求解.基于本文推导的方程对单筋和三筋加筋板在不同压剪比下的屈曲荷载和模态进行分析,得到与Abaqus基本一致的结果.加筋板的屈曲荷载随着筋条数增加明显增大;压剪比为1∶1时,各阶屈曲荷载均最小;随着位移函数阶数提高,本文算法计算精度提高,但相应的计算量也显著增大.  相似文献   

6.
王波  徐绯  刘亚各 《应用力学学报》2013,(1):115-119,152
通过试验和有限元方法分析了单轴压缩下加筋板的失效模式.研究了三种预置损伤位置及四种损伤尺寸的复合材料T型加筋板的线性及非线性屈曲行为,比较了损伤对临界屈曲载荷和最大失效载荷的影响.研究结果表明:损伤位置在桁条间蒙皮时,损伤的尺寸对其临界屈曲载荷和最大失效载荷影响较小;损伤位置在桁条区蒙皮时,加筋板的临界屈曲载荷随损伤尺寸的增加而明显降低,最大降低50%;损伤位置在桁条边凸缘处蒙皮时,加筋板最大失效载荷所受影响随损伤尺寸的增加而明显降低,最大降低25%.从而得到了复合材料加筋板临界屈曲载荷比和最大失效载荷比与损伤位置及尺寸的关系图.  相似文献   

7.
复合材料襟翼壁板屈曲失稳行为的栅线投影实验研究   总被引:1,自引:0,他引:1  
本文利用栅线投影测量方法研究了蜂窝夹层板、工字型及T型加筋板三种不同结构形式复合材料襟翼壁板在压缩载荷下的屈曲失稳行为,得到了不同形式结构件屈曲的全场离面位移分布规律,分析了各自的屈曲失稳模式.研究结果表明,栅线投影测量方法在大尺度复合材料结构失稳变形测试中具有可行性;在相同面板尺寸条件下,工字型加筋复合材料襟翼壁板屈曲临界载荷最大,承载能力最强.本文结果可为飞机复合材料结构设计提供实验依据.  相似文献   

8.
整体加筋壁板裂纹扩展轨迹模拟及控制分析   总被引:4,自引:1,他引:3  
应用有限元方法并结合裂纹扩展方向判据分析模拟了飞机整体加筋壁板裂纹的扩展轨迹,与实验结果对比证明此方法的有效性;并通过壳单元模型和粘聚区渐进损伤模型详细讨论了影响整体加筋壁板裂纹扩展的筋条参数,研究了壁板筋条对裂纹止裂的控制,并对不同参数下裂纹的应力强度因子和扩展情况作对比分析.文章所述方法和结论对于飞机整体加筋壁板的损伤容限设计具有指导意义.  相似文献   

9.
加筋壁板是复合材料飞行器主承力构件的主要结构形式,通过复合材料铺层参数设计可以有效优化壁板的强度,但铺层参数的变化也会影响壁板的固化变形.因此,复合材料加筋壁板铺层设计过程中需要综合考虑整体强度和固化变形.本文针对复合材料加筋壁板结构,建立了失效分析模型和固化变形分析模型;基于实验设计方法、NSGA-Ⅱ遗传算法以及上述分析模型,建立了综合考虑强度与固化变形的加筋壁板铺层优化方法.优化结果显示复合材料加筋壁板在强度提高的同时,固化变形显著降低.  相似文献   

10.
基于板的一阶剪切理论和V on-K arm an大挠度理论,分别推导了复合材料层合板和层合梁的几何非线性有限元列式,提出了含嵌入分层的复合材料加筋层合板在受压缩载荷作用下的后屈曲有限元分析方法,对在板厚方向具有不同分层位置的加筋板结构进行了有限元数值分析,研究了不同的加筋方式及筋的分布对具有分层损伤的复合材料加筋层合板的后屈曲性态的影响,所得结果对确定在压缩载荷作用下含损伤复合材料加筋层合板的剩余承载能力具有参考价值。  相似文献   

11.
In this research, adiabatic two-phase air-water flow was investigated, and results for smooth and ribbed rectangular ducts are presented here. The test fluids were air and water at approximately atmospheric conditions. Three ribs of different heights were used; the rib width and pitch were held constant. The ribs were positioned in the duct at three different locations to establish three different conditions: on the bottom wall (water side), on the top wall (air side) and on both the top and bottom walls. The flow regimes in the smooth and ribbed ducts, which were recorded with a video camera, were classified as plug, stratified, slug and wavy flow. The location of the ribs in the duct did not alter the shape of the flow regimes, but the regime boundaries were considerably changed (repositioned). The effects of using ribs of different heights on regime boundaries are represented with flow map diagrams and discussed in detail. Compared to the smooth duct, the ribbed duct had different regime boundary positions. Increasing the rib height initiated hydrodynamical instability at lower fluid velocities. These findings are relevant for the operation and design of pipes, boilers and heat exchangers.  相似文献   

12.
Turbulent heat transfer in a ribbed square duct of three different blockage ratios are investigated using direct numerical simulation (DNS). The results of ribbed duct cases are compared with those of a heated smooth duct flow. It is observed that owing to the existence of the ribs and confinement of the duct, organized secondary flows appear as large streamwise-elongated vortices, which intensely interact with the rib elements and four sidewalls and have profound influences on the transport of momentum and thermal energy. This study also shows that the drag and heat transfer coefficients are highly sensitive to the rib height. It is observed that as the rib height increases, the impinging effect of the flow on the windward face of the rib strengthens, leading to enhanced rates of turbulent mixing and heat transfer. The influence of sidewalls and rib height on the turbulence structures associated with temperature fluctuations are analyzed based on multiple tools such as vortex swirling strengths, temporal auto-correlations, spatial two-point cross-correlations, joint probability density functions (JPDF) between the temperature and velocity fluctuations, statistical moments of different orders, and temperature spectra.  相似文献   

13.
In the present study, experimental studies are carried out to investigate the heat transfer and friction characteristics in a square duct roughened by various-shaped ribs on one wall. The ribs are oriented transversely to the main stream in a periodic arrangement. Liquid crystal thermography is employed to measure the local and average heat transfer coefficient on the ribbed surface. The rib height-to-duct hydraulic diameter ratio is fixed at 0.1; the rib pitch-to-height ratio varies from 8 to 15 and the test Reynolds number spans from 8,000 to 20,000. The results show that the trapezoidal-shaped ribs with decreasing height in the flow direction (case C) provide the highest heat transfer enhancement factor and are likely to be used to suppress the local hot spot which usually occurs in the region just behind the ribs.  相似文献   

14.
Heat and mass transfer in natural convection vertical channels was investigated by means of two-dimensional CFD simulations aided by optimization algorithms. The channel was immersed in air, enclosed between an adiabatic smooth wall and an isothermally heated ribbed wall. The ribs were perpendicular to the fluid flow and their height, width, pitch, thermal conductivity and lateral wall inclination were variable. Also the smooth heated wall channel was studied and compared with the ribbed one. The existence of an optimal channel width for a given channel height and rib geometry was shown. A sensitivity analysis was carried out for the ribbed and the smooth channels. Optimization was applied to the ribbed channel problem in order to maximize the heat and the mass transfer through a multi-objective genetic algorithm. It was found that the presence of the ribs penalizes the channel performance so that no ribbed channel over-performed the smooth one.  相似文献   

15.
In the present study, the thermal and hydraulic performance of three rib-roughened rectangular ducts is investigated. The aspect ratio of the ducts was 1 to 8, and the ribs were arranged staggered on the two wide walls. Three rib configurations were tested: parallel ribs and V-shaped ribs pointing upstream or downstream of the main flow direction. For all cases, the rib height-to-hydraulic diameter ratio was 0.06, with an attack angle of 60° and a pitch-to-height ratio of 10. The Reynolds number range was from 1000 to 6000. Liquid crystal thermography was employed in the heat transfer experiment to demonstrate detailed temperature distribution between a pair of ribs on the ribbed surfaces. The secondary flows caused by the inclined ribs create a significant spanwise variation of the heat transfer coefficients on the rib-roughened wall with high heat transfer coefficient at one end of the rib and low value at the other. In the streamwise direction between two consecutive ribs, the temperature distribution shows a sawtooth fashion because of flow reattachment. Based on the local heat transfer coefficients, the average Nusselt numbers were estimated as weighted mean values. Isothermal pressure drop data were taken and presented as Fanning friction factors. The ducts are compared to each other by considering both heat transfer and friction factor performance.  相似文献   

16.
采用基于移动最小二乘近似的无网格方法并结合一阶剪切变形理论,分析了非均匀弹性地基上变厚度加筋板的弯曲和固有频率问题.首先,用节点对变厚度板和筋条分别进行离散,导出变厚度板和筋条的势能;其次,利用筋条与变厚度板之间的位移协调条件将筋条的节点参数转换为板的节点参数,再将两者的势能进行叠加得到变厚度加筋板的总势能,并根据能量法得到其动能;最后,利用最小势能原理及Hamilton原理分别得到弯曲控制方程与振动控制方程.由于采用的方法不能直接施加位移边界,故采用完全转换法处理位移边界.本文先计算变厚度板的弯曲及非均匀弹性地基板的固有频率,与文献对比验证方法的有效性;然后对非均匀弹性地基上变厚度加筋板弯曲与 自由振动进行了计算,并将计算结果与有限元结果进行了对比.结果表明,本文方法计算所得结果与文献解及有限元结果之间的误差均小于5%,验证了该方法在计算非均匀弹性地基上变厚度加筋板弯曲与固有频率问题的有效性.  相似文献   

17.
Two-pass internal cooling passage with rib turbulators has been investigated for convective heat/mass transfer under rotating conditions. The flow and heat transfer characteristics in the cooling passage are very complicated so that it is required the detail analysis to design more efficient gas turbine blades. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The local heat/mass transfer and flow pattern in the cooling passage are changed significantly according to rib configurations, duct turning geometries and duct rotation speeds. Four different rib configurations are investigated to obtain the combined effects of the angled rib, duct turning and rotation. The results show that the duct rotation generates the heat/mass transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The angled ribs generate a single rotating secondary flow with the cross-rib arrangement and the duct turning makes a strong Dean-type vortex. These vortices affect significantly the heat/mass transfer on the duct wall. The overall heat transfer pattern on the leading and trailing surfaces for the first and second passes are dependent on the duct rotation, but the local heat transfer trend is affected mainly by the rib arrangements. In addition, the present study observes the rotating effect in the two-pass smooth duct to obtain the baseline data in comparison with the ribbed duct for various rib arrangements.  相似文献   

18.
The present study investigates convective heat/mass transfer and flow characteristics inside a cooling passage of rotating gas-turbine blades. The rotating duct with and without rib turbulators are used. The ribs of 70° attack angle are attached on leading and trailing surfaces in a staggered arrangement. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. Additional numerical calculations are conducted to analyze the flow patterns in the cooling. The local heat/mass transfer and the flow pattern in the passage are changed significantly according to rib configurations, duct turning geometry and duct rotation speed. The results show that the duct rotation generates the heat transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The heat/mass transfer on the ribbed duct shows 80% higher than the smooth duct because the ribs attached on the walls disturb the mainflow resulting in recirculation and secondary flows near the rib with the secondary flow generated by rotation. The overall heat transfer pattern on the leading and trailing walls for the first and second passes depend on the rotating speed and the turning geometry, but the local heat transfer trend is affected mainly by the rib arrangeements.  相似文献   

19.
Experimental investigation had been conducted to study the steady-state forced convection heat transfer and pressure drop characteristics of the hydrodynamic fully-developed turbulent flow in the air-cooled horizontal equilateral triangular ducts, which were fabricated with the same length and hydraulic diameter. Inner surfaces of the ducts were fixed with square ribs with different side lengths of 6.35, 9.525 and 12.7 mm, respectively, and the uniform separation between the centre lines of two adjacent ribs was kept constant at 57.15 mm. Both the triangular ducts and the ribs were fabricated with duralumin. The experiments were performed with the hydraulic diameter based Reynolds number ranged from 3100 to 11300. The entire inner wall of the duct was heated uniformly, while the outer surface was thermally insulated. It was found that the Darcy friction factor of the duct was increasing rather linearly with the rib size, and forced convection could be enhanced by an internally ribbed surface. However, the heat transfer enhancement was not proportional to the rib size but a maximum forced convection heat transfer augmentation was obtained at the smallest rib of 6.35 mm. Non-dimensional expressions for the determination of the steady-state heat transfer coefficient and Darcy friction factor of the equilateral triangular ducts, which were internally fabricated with uniformly spaced square ribs of different sizes, were also developed. Received on 25 May 1999  相似文献   

20.
提出了一种求解矩形加肋板线性弯曲问题的移动最小二乘无网格法。将矩形加肋板模拟成平板与肋条组成的复合结构。先基于一阶剪切变形理论,由移动最小二乘近似建立板和肋条的位移场,再利用板与肋条叠合处的位移协调条件,推导肋条与板的节点参数转换方程,最后利用此方程将板与肋条的应变能叠加,推导出整个加肋板的刚度方程。由于本文提出的加肋板无网格模型中不涉及到网格,肋条不必像有限元那样必须沿网格线布置,肋条位置的改变也不会导致板网格的重新划分。文末算例表明由本文方法得到的解与采用实体单元得到的ANSYS有限元解吻合良好,证明了本文方法的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号