首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了电磁速度传感器(EMVG)在半无限长一维装药中和有限长一维装药中,受平面一维爆轰波作用下的运动过程;论述了用EMVG来研究爆轰产物流场规律的基本原理和方法;报导了一些初步的试验结果,这些结果与理论分析结果比较一致。  相似文献   

2.
一维爆轰传播的理论完备、计算准确, 二维斜爆轰传播由于壁面与黏性效应, 大尺度、高精度预测还有一定难度. 利用Euler方程和H2-Air基元反应模型, 对二维有限长楔面诱导的斜爆轰和活塞驱动一维非定常正爆轰进行计算比较研究, 从时空两个维度方面, 分析了两者在起爆过程、稀疏波传播、爆轰波面演化中的关联特性. 研究结果表明: 在过驱动度相同的条件下, 经过时空变换的活塞驱动一维爆轰传播与二维驻定斜爆轰在起爆区波系结构、波面演化特征和主要参数分布规律方面无论定性或者定量对比均符合较好, 所以, 一维非定常爆轰和二维驻定斜爆轰具有时空相关性. 两者的差异主要体现在过驱动斜爆轰受稀疏波影响过渡到近Chapman-Jouguet (C-J)爆轰状态所需的弛豫时间不同, 原因可能是起源于活塞和壁面稀疏波强度的差异. 本文提出的一维与二维爆轰传播的时空关联方法不仅有助于认知斜爆轰起爆、过驱爆轰产生、胞格爆轰演化的三阶段规律, 还可以对比揭示壁面、边界层和黏性效应的影响, 应用在斜爆轰发动机燃烧室设计中能够有效节约计算时间和成本, 并降低复杂度.   相似文献   

3.
爆轰传播理论的解析研究方法(二)   总被引:4,自引:0,他引:4  
自相似流动 前面讨论的一维平面爆轰波的Taylor波,在固结于波阵面的参考系中流场是定常的。起爆、传播和爆轰效应等问题中经常出现不定常流动,这里最简单的是自相似流动。最一般的相似概念应采用本文以后讨论的群论方法,本节则采取较简单的量纲分析观点,而且限于讨论一维(平面、柱、球对称)散心和聚心爆轰波。  相似文献   

4.
5.12汶川大地震诱发大型崩滑灾害动力特征初探   总被引:21,自引:2,他引:19  
许强   黄润秋 《力学学报》2008,16(6):721-729
对乙炔氧气混合气体中爆轰波与激波的正面对撞现象的实验研究是以高速摄影获 取两波对撞的x-t纹影图,以烟迹板记录对撞中的爆轰胞格图案,并基于激波 理论和经典CJ爆轰理论求解了两波对撞的稳态解并探寻其规律. 研究发现透射波系包括一道激波和爆轰波, 以及紧随爆轰波后的稀疏波区,这一结果对应于一维理论分析中的CJ解. 透射波系基本不受 初始压强影响;初始温度也只成比例地改变流场整体速度,温度越高,速度越快;对波系起 实质影响作用的是入射激波强度,激波越强,则整个透射流场呈现偏向激波的趋势;理论分 析还指出,稀疏波区的出现不可避免,当激波强度趋于声波稀疏波区趋于消失,激波越强则 疏波区趋于扩大. 两波对撞存在一个有限的转变阶段,透射爆轰首先减缓,接着迅速迸发为 过驱爆轰,然后再逐渐平衡为CJ爆轰. 对于强不稳定的燃气,对撞后爆轰波在空间上的发展 极不均衡,一些区域发生火焰面与诱导激波的严重脱离,随后的火焰面失稳发展为诱导激波 区内的爆轰波,实验观察到了这种爆轰在烟迹板上留下的极为精细的迹线.  相似文献   

5.
爆轰波与激波对撞的实验研究   总被引:1,自引:0,他引:1  
朱雨建  杨基明 《力学学报》2008,40(6):721-728
对乙炔氧气混合气体中爆轰波与激波的正面对撞现象的实验研究是以高速摄影获取两波对撞的x-t纹影图,以烟迹板记录对撞中的爆轰胞格图案,并基于激波理论和经典CJ爆轰理论求解了两波对撞的稳态解并探寻其规律. 研究发现透射波系包括一道激波和爆轰波,以及紧随爆轰波后的稀疏波区,这一结果对应于一维理论分析中的CJ解. 透射波系基本不受初始压强影响;初始温度也只成比例地改变流场整体速度,温度越高,速度越快;对波系起实质影响作用的是入射激波强度,激波越强,则整个透射流场呈现偏向激波的趋势;理论分析还指出,稀疏波区的出现不可避免,当激波强度趋于声波稀疏波区趋于消失,激波越强则疏波区趋于扩大. 两波对撞存在一个有限的转变阶段,透射爆轰首先减缓,接着迅速迸发为过驱爆轰,然后再逐渐平衡为CJ爆轰. 对于强不稳定的燃气,对撞后爆轰波在空间上的发展极不均衡,一些区域发生火焰面与诱导激波的严重脱离,随后的火焰面失稳发展为诱导激波区内的爆轰波,实验观察到了这种爆轰在烟迹板上留下的极为精细的迹线.   相似文献   

6.
气相爆轰物理的若干研究进展   总被引:1,自引:0,他引:1  
爆轰现象的研究已经有一百多年的历史了,爆轰物理的研究取得了许多重要进展.本文从爆轰波的经典理论、胞格爆轰波的多波结构、气相爆轰波形成机理、气相爆轰波传播机制等方面综述了相关的若干研究进展,评述了这些进展的科学性与局限性,并探讨了将来可能的研究方向.这些研究进展主要包括:CJ(Chapman-Jouguet)理论和ZND(Zel'dovich,von Neumann,D?ring)模型、爆轰波多波结构、爆轰胞格特征、直接起爆和爆燃转爆轰过程、热点起爆机制、爆轰波稳定性、扰动爆轰波的传播等.爆轰波是以超声速传播的自持燃烧现象,涉及了激波相互作用、燃烧化学反应、湍流扩散和流动不稳定性等复杂的气动物理过程,相关研究具有重要的学科理论意义.另外,爆轰燃烧具有高效的热化学能释放特点,在先进的热力推进技术方面有着重要的应用背景,因此相关研究也具有重要的工程应用价值.   相似文献   

7.
自持的和活塞驱动的散心爆轰波   总被引:1,自引:2,他引:1  
本文研究一维散心爆轰波的传播规律。根据自相似流动方程组,研究了积分曲线在相平面上的性态。假定方程组的解可用多项式近似,利用级数展开,可得近似解的头几项系数。再利用静止区或活塞边界条件确定其余系数,得到了关于自持爆轰波(Taylor波)及活塞驱动爆轰波的CJ极限和强波极限等几类大范围适用的高精度的近似解。本文并以水中强冲击波问题为例,说明这种近似方法也可应用于研究惰性介质中的冲击波。  相似文献   

8.
基于三波理论和Whitham方法对带隔板装药爆轰波相互作用后发生的正规反射和非正规反射进行了理论分析,给出了爆轰波发生马赫反射时临界入射角和马赫杆增长角等参数的变化规律,提出了马赫杆高度的计算模型。基于凝聚炸药爆轰Jones-Wilkins-Lee(JWL)模型和冲击起爆的Lee-Tarver模型,利用有限元计算软件对带隔板装药爆轰波的传播过程进行了数值模拟。结果表明,发生马赫反射后,随着爆轰波的传播,马赫杆的高度不断增加。数值模拟结果与理论计算结果吻合较好,说明本文中采用的理论模型和数值模拟方法能够较准确地描述带隔板装药爆轰波马赫反射的传播过程。  相似文献   

9.
建立了描述可燃粉全-氧气混合物爆轰波的一维两相反应流模型,用MacCormack有限差分格式求解了控制方程,成功地模拟了玉米粉-氧气混合物在氢-氧爆轰驱动下爆轰波的传播过程,其数值结果在接近稳态爆轰区时与实验规律有良好的一致性。  相似文献   

10.
建立了描述可燃粉全-氧气混合物爆轰波的一维两相反应流模型,用MacCormack有限差分格式求解了控制方程,成功地模拟了玉米粉-氧气混合物在氢-氧爆轰驱动下爆轰波的传播过程,其数值结果在接近稳态爆轰区时与实验规律有良好的一致性。  相似文献   

11.
粘性及热传导对于爆轰波的影响   总被引:6,自引:0,他引:6  
武丹  王健平 《应用力学学报》2012,29(6):630-635,769
对在满足化学当量比的氢氧混合气体中传播的一维和二维连续旋转爆轰波进行了数值模拟,以此检验粘性和热传导对爆轰波发展和结构的影响。模拟分别基于NS和Euler控制方程,采用二步化学反应模型,对流项采用5阶MPWENO格式求解,时间方向采用3阶TVD Runge-Kutta法,粘性项采用中心差分格式进行离散。结果表明:粘性和热传导不会对爆轰波流场的基本流场结构产生影响;在具体数值上,粘性和热传导的影响值在爆轰波、斜激波、接触间断等速度或温度剧烈变化处相对较大,但总体上其影响量均比爆轰波流场的步进值小三个量级。因此,在没有壁面效应的一维爆轰和二维连续旋转爆轰波流场中,粘性和热传导项作为很小的扰动存在,对爆轰波的流场结构和数值大小基本不会产生影响。  相似文献   

12.
给出了二维弯曲爆轰波后产物流场计算方法。爆轰波阵面传播规律满足Detonation Shock Dynamics (DSD)理论并用level set (LS)方法计算,波阵面传播规律与波后流场的耦合通过程序燃烧法实现,反应进程变量可作为LS函数的函数给出。爆轰波从刚性细管道向粗管道传播产生绕射的二维计算结果表明,化学反应速率不影响波后流场分布,只影响反应区结构。此方法可用于钝感炸药的驱动计算问题。  相似文献   

13.
应用二种截然不同的炸药PBX 95 0 1和T2 ,计算了爆轰波在不同入射角下与金属平板的斜相互作用。在正规反射区 ,计算结果与激波极线理论基本一致 ;应用燃烧模型 ,分别计算了Fe球壳装药JB90 0 3(HE)及JB90 14 (IHE)散心爆轰波的绕射传播 ,计算结果与实验很好地符合。在非正规反射区 ,二维拉氏程序计算结果明显地不同于经典理论结果 ,计算中没有出现Mach反射。计算结果显示 ,毗邻介质影响节点附近的爆轰波阵面形状及爆轰波速度 ;不同的反应率函数计算的节点图像不同。  相似文献   

14.
基于基元反应模型和单步反应模型,对直管道中H2-air混合气体中爆轰波的传播过程进行了数值模拟,揭示了气相爆轰波传播过程中的自点火效应。利用数值模拟方法计算了不同爆轰模型的点火延迟时间,并得到了爆轰波三波点的传播过程以及所形成胞格结构的尺寸。结果表明,胞格宽度与点火延迟时间成正比;爆轰波诱导区内气体的点火延迟时间与三波点的运动周期基本一致。进一步对结果分析可知,爆轰波的自维持传播取决于点火延迟时间(表征化学反应的特征时间)和三波点的运动周期(表征流动的特征时间)的匹配;当二者相匹配时,经过前导激波压缩后形成的高温高压爆轰气体,在短时间内实现了自点火,同时释放出大量的能量推动了爆轰波的前进,即爆轰波的稳定自维持传播依靠其自点火机制。  相似文献   

15.
二维定常爆轰波的C-J条件与流线形状   总被引:2,自引:0,他引:2  
浣石 《爆炸与冲击》1989,9(1):11-16
本文在W-K模型的基础上,采用自然坐标系,导出了二维定常爆轰波的声速面条件,即二维C-J条件。经典的一维C-J条件和准一维C-J条件是它的两个特例。声速面条件又可作为判定流线形状正确与否的必要条件。通过分析讨论,认为在二维定常爆轰波的有效反应区中,流线应呈先向内,后向外偏转的波纹型形。在确定声速面形状的同时,有效反应区的流场分布也随之确定。  相似文献   

16.
氢氧混合气体爆轰波的真实化学反应模型数值模拟   总被引:3,自引:0,他引:3  
采用高精度的ENO格式和基于基元化学反应的真实化学反应模型求解氢氧混合气体一维爆轰波的精细结构。采用直接起爆方法得到稳定传播的爆轰波 ,计算的爆轰波阵面参数和实验相当符合。对爆轰波反应区化学反应的研究表明 ,参与反应的不同组分具有不同类型的变化特征。网格尺寸影响的研究表明 ,计算结果的精度随着网格尺寸的增加而增加 ,并能保持较好的收敛性。移动网格研究结果表明 ,网格运动速度和爆轰速度接近时 ,两者的相互作用对计算结果产生一定影响。  相似文献   

17.
非理想爆轰的推飞片效率   总被引:1,自引:0,他引:1  
本文采用一定形式的状态方程,模拟爆轰波后稀疏波区内介质的放能,初步解析地讨论了非理想爆轰波的推飞片效率问题,并与相应CJ爆轰波的情况进行了对比。由本文的结果可见:(1)对CJ点之后释放能量的非理想爆轰波,波后压力分布与瞬时释放能量的多少和CJ点之后释放能量的多少和快慢有关。(2)非理想爆轰的推飞片效率,除炸药与飞片质量比之外,不仅依赖于CJ点之前瞬时释放出来的能量Q,还依赖于CJ之后释放的能量q和标志释放快慢的参数n。(3)非理想爆轰波、包括弱爆轰的推飞片效率,对所讨论的参数与CJ爆轰相似,均存在一个最佳的选择。  相似文献   

18.
应用阵面追踪法对散心爆轰波传播的数值模拟   总被引:1,自引:1,他引:0  
考虑到爆轰波阵面曲率及化学反应区宽度的作用 ,由修正Hugoniot关系式解析求解了波后状态 ,应用阵面追踪法 (FTM)数值模拟了曲面散心爆轰波的传播。计算给出的散心爆轰波走时及波阵面上物理量都达到了波阵面曲率的一阶精度。  相似文献   

19.
为了研究气相爆轰波冲击气固界面过程中透射波和反射波的相关特性,建立爆轰波冲击气固界面的一维理论模型,对不同初始压力条件下爆轰波到达气固界面后的界面两侧的压力和界面速度变化进行分析。利用时空守恒元求解元方法对气相爆轰波冲击气固界面过程进行数值模拟,分析气体部分反射波的压力分布和速度变化规律及透射入固体中应力波的波形和波速特征,并搭建气相爆轰波冲击活塞实验装置进行进一步验证。结果表明:气体爆轰波到达气固界面后,在固体中透射指数形式的弹性波,并在界面处向气体区反射一道激波。爆轰波后的稀疏波与反射激波相交,削弱反射激波,最终形成稳定激波回传。气固界面在稀疏波和反射稀疏波的作用下,压力和速度逐渐下降,最终也形成稳定状态。在不同混气初始压力情况下,爆轰波冲击过程中产生的最高压力和爆压的比值基本保持不变。理论模型对特征点相关物理量的计算值和实验数据符合的较好。  相似文献   

20.
两相爆轰波的松弛结构   总被引:2,自引:0,他引:2  
范宝春  汤明钧 《力学学报》1992,24(5):556-566
两相爆轰波的松弛结构明显区别于均相爆轰,除需考虑化学反应的影响外还需考虑两相流效应。本文的理论分析表明,化学反应效应和两相流效应对爆轰波松弛区内某些参数变化的影响是一对矛盾因素,这使得松弛区内的参数分布呈较为复杂的形态,均相爆轰中这类分布曲线往往是单调变化的。根据作者提出的云雾和粉尘爆轰模型所进行的计算表明理论分析与计算结果所呈现的态势一致。 文中还讨论了两相爆轰波的C-J条件,Rayleigh方程和Hugoniot方程,并根据计算绘制了Rayleigh曲线和Hugoniot曲线,这从另一侧面反映了两相爆轰波松弛结构的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号