首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
杆系静不定结构的变形协调条件   总被引:1,自引:1,他引:1  
本文用数学方法建立杆的变形与节点位移的解析关系式,利用这个解析式,可方便地求出复杂情况下杆系结构的变形协调方程  相似文献   

2.
建立超静定杆系变形协调方程的能量方法   总被引:3,自引:1,他引:3  
由能量法并利用各杆的静力关系,推导超静定杆系的变形协调方程.  相似文献   

3.
证明了在杆系中,力的转换矩阵与位移的转换矩阵互为转置矩阵,当静不定非线性杆系静力平衡方程确定,而变形协调条件难以确定时,利用转置矩阵可以方便求得静不定非线性杆系的内力及有关节点位移。非线性材料杆系应力-应变关系σ=Bε1/n中的幂n=2时,非线性材料静不定桁架有可能存在两个解;而采用常规方法求解静不定非线性杆系内力时有可能存在漏解现象,即出现仅能得到一个解的现象。非线性材料杆系应力-应变关系σ=Bε1/n中的幂n=1时,假设非线性材料杆系各杆内力全部受拉力,或按各杆内力真实受力情况去求各杆内力及节点位移,求得结果的绝对值都是相同的,仅存在符号的差异;与按非线性材料杆系应力-应变关系σ=Bε1/n中幂n=2时,求得的各杆内力及节点位移的其中一个解的绝对值是一致的。  相似文献   

4.
弹性杆盘绕折叠的力学分析   总被引:1,自引:0,他引:1  
以可伸展空间结构元件的盘绕折叠过程为工程背景,分析受圆柱面单面约束的弹性直杆变形为螺旋杆,最终压缩为叠放的平面圆环的变形过程.对此空间大变形的分析不允许利用小变形假设进行简化.由于约束力的存在,也不能直接利用忽略分布力的Kirchhoff弹性杆方程.本文以表述截面姿态的欧拉角为变量,建立受圆柱面约束弹性杆平衡的非线性方程.利用方程的初积分计算杆截面的内力和力矩.忽略盘绕过程的惯性效应,将参数连续改变的螺旋线状态作为杆盘绕过程中的准平衡状态.导出为实现盘绕过程需要施加的轴向压力和扭矩随螺旋角的变化规律.根据一次近似稳定性理论分析得出:两端铰支弹性杆当相对扭率为零时不能保证螺旋线平衡的稳定性.若杆端支承允许存在相对扭转,则轴向压力和扭矩按文中确定的规律变化时可以保证盘绕过程的稳定性.  相似文献   

5.
以平面三角桁架为例,通过放弃应用原始尺寸原理,即在变形后的位形上建立平衡方程,并结合变形协调关系考虑几何非线性,得到了桁架各杆轴力的解,进而给出各杆应力和中间铰位移以及各杆转角的解.最后给出了钢质、木质和橡胶杆桁架的3个算例,还得到了应力的相对误差估计式.分析结果表明应用原始尺寸原理所带来的杆内应力的相对误差与杆内名义应变相同,对于金属桁架在满足强度条件的范围内,应用原始尺寸原理所带来的误差是可以忽略的,而对于橡胶桁架来说其误差是需要考虑的.  相似文献   

6.
以平面三角桁架为例,通过放弃应用原始尺寸原理,即在变形后的位形上建立平衡方 程,并结合变形协调关系考虑几何非线性,得到了桁架各杆轴力的解,进而给出各杆应力和 中间铰位移以及各杆转角的解. 最后给出了钢质、木质和橡胶杆桁架的3个算例,还得到了 应力的相对误差估计式. 分析结果表明应用原始尺寸原理所带来的杆内应力的相对误差与杆 内名义应变相同,对于金属桁架在满足强度条件的范围内,应用原始尺寸原理所带来的误差 是可以忽略的,而对于橡胶桁架来说其误差是需要考虑的.  相似文献   

7.
 阐述了几何法分析拉(压)超静定杆系变形相容关系存在的困难,提出了用解析法求解 超静定杆系的方法并给出了算例.  相似文献   

8.
基于Timoshenko梁静力理论和各向异性材料的本构关系,对于一般截面形状的杆系结构,推导了杆端内力与杆端位移之间的关系,并给出了作用于杆件上的荷载转化为等效节点荷载的方法.以混合节点为例,根据结构节点的力平衡和位移协调条件,推导了常见形式节点的传递分配矩阵和载荷源向量,进而得到结构的回传波射矩阵列式,求解以杆端位移为基本未知量的矩阵方程,给出了杆端位移和内力的计算公式.文中给出了算例分析.与有限元法数值结果的比较表明,回传波射矩阵法用于分析各向异性材料平面杆系结构的静力问题是有效和精确的.  相似文献   

9.
先用几何图解法对一简单线弹性杆系变形作分析计算,发现功能原理更可行有效. 方法是假设用一个和载荷P 相垂直的力H(虚拟力)先作用于杆系,根据功能原理导出在载荷P 作用下的位移计算公式. 并把这一方法推广到多个杆件组成的弹性杆系(桁架)中,并建立相应计算公式. 可望实现计算机编程,大大简化这一类问题的工程计算.  相似文献   

10.
本文发展了具有任意连接和约束的空间杆系结构静力分析的回传波矩阵法。以杆端位移和转角为基本未知量,通过结构所有节点的平衡方程和位移协调条件,推导出传递分配矩阵和载荷源向量,并进一步利用设定的同一杆件两个局部坐标系下杆端位移之间的关系,最终得到结构的回传矩阵。据此可求出结构所有杆件的杆端位移及杆端内力。对不同的杆件连接形式,如刚接、铰接、半刚接,以及不同的约束情况,如固定支座、铰支座、定向支座等,本文推导出了空间杆系结构的回传波矩阵表达式,可直接用于相应空间杆系结构内力的计算。同时,针对一个具体刚架结构进行了算例分析,并通过与弯矩分配法和有限元结果的比较,验证了本文方法的精确度。  相似文献   

11.
韩文娟  刘海 《力学与实践》2010,32(4):109-111
对《力学》中的物体自由度进行多方面分析,以深化教学、提高学生正 确分析物理问题的能力.使用实际教学分析的研究方法,在《力学》范围内讨论自由度与坐标、 自由与约束的关系并得以下结论: (1) 同一物体的自由度随其所在的``空间'不同而不同, 不因坐标系的选取不同而 异, 在同类参考系中不因参考系的动静而有别;(2)自由度遵循叠加原理. 讨论了质点系的总自由度及相关计算问题,并指出研究《力学》中自由度的意义.  相似文献   

12.
The present paper deals with development and design of new methods utilizing Wiedemann's effect for determination of state of strain in building structures. Wiedemann's effect and some features of torsional strain of magnetic field are the basis of new experimental method. Especially the point electromagnetic strain gages using the effect of pure torsion of electromagnetic field to enable universal examination. For strain-gage measurements, almost all physical quantities are used which can be related to the variation in length of the structures. From the electric strain measurements, the most commonly used methods are the measurements by resonance-wire strain gages or by electric-resistance strain gages. In this paper, electromagnetic strain gages are discussed using the Wiedemann effect, and the author describes some new measuring equipment and his own suggestions and methods based on an application of this effect.  相似文献   

13.
14.
15.
16.
17.
The exact solutions of the nonlinear equations of filtration of an aerated liquid have been obtained in [1–3]. In [4] the system of equations of an aerated liquid have been reduced to the heat-conduction equation under certain assumptions. An approximate method of computing the nonsteady flow of an aerated liquid is given in [5], where the real flow pattern is replaced by a computational scheme of successive change of stationary states. In [6] the same problem is solved by the method of averaging. In the present article estimates of the solution of the equations for nonstationary filtration of an aerated liquid in one-dimensional layer are constructed under certain conditions imposed on the desired functions. These estimates can be used as approximate solutions with known error or for the verification of the accuracy of different approximate methods. We note that the use of comparison theorem for the estimate of solutions of equations of nonlinear filtration is discussed in [7–9]. The methods of constructing estimates of solutions of various problems of heat conduction are given in [10, 11]  相似文献   

18.
19.
20.
It is well known that the problem on nonseparating potential flow of an incompressible fluid about an array of profiles reduces to an integral equation for a certain real function, determined on the contours of the profiles of the array. As such a function one can take, as was done, for instance, in [1–5], the relative velocity of the fluid on the profiles of the array. For arrays of profiles of arbitrary shape it is necessary to solve the corresponding integral equation numerically. In the particular examples of the calculation of aerodynamic arrays that are available [1–3] the numerical methods used were based on the approximate evaluation of contour integrals by rectangle formulas. As investigations showed, sizeable errors arose thereby in the approximate solution obtained, these being especially significant in the case of curved profiles of relatively small bulk. In the present paper a method for the numerical solution of the integral equation obtained in [5] is proposed. The method is based on the replacement of a profile of the array with an inscribed N polygon, the length of whose sides is of the order N–1 and whose internal angles are close to . Convergence with increasing N of the numerical solution to an exact solution of the integral equations at the reference points is demonstrated. Examples of the calculation are given.Novosibirsk. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 105–112, March–April, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号