首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
This paper describes a method for the estimation of the instantaneous air–water interface directly from particle image velocimetry (PIV) images of a laboratory generated air entraining turbulent hydraulic jump. Image processing methods such as texture segmentation based on gray level co-occurrence matrices are used to obtain a first approximation for the discrete location of the free surface. Active contours based on energy minimization principles are then implemented to get a more accurate estimate of the calculated interface and draw it closer to the real surface. Results are presented for two sets of images with varying degrees of image information and surface deformation. Comparisons with visually-interpreted surfaces show good agreement. In the absence of in-situ measurements, several verification tests based on physical reasoning show that the free surface is calculated to acceptable levels of accuracy. Aside from a single image used to tune the set of parameters, the algorithm is completely automated to process an ensemble of images representative of typical PIV applications. The method is computationally efficient and can be used to track fluid-interfaces undergoing non-rigid deformations.  相似文献   

2.
Generalized detection of a turbulent front generated by an oscillating grid   总被引:1,自引:0,他引:1  
This report presents experimental results on the propagation of a turbulent front induced by an oscillating grid starting from rest. The purpose of this preliminary investigation is to implement and validate detection methods of the turbulent/non-turbulent interface, which are based on flow measurements (velocity and vorticity) and scalar intensity, for oscillating grid turbulence. This is done using particle image velocimetry (PIV) and fluorescent dye visualization, separately. The results of both techniques describe the spreading of the turbulent front, confirming the known dependency of the front location, H, on time, t. It is demonstrated, that the level-based detection of a turbulent front can be applied to an unsteady flow, such as grid turbulence advancing into a fluid at rest.  相似文献   

3.
This paper presents a PIV (particle image velocimetry) image processing method for measuring flow velocities around an arbitrarily moving body. This image processing technique uses a contour-texture analysis based on user-defined textons to determine the arbitrarily moving interface in the particle images. After the interface tracking procedure is performed, the particle images near the interface are transformed into Cartesian coordinates that are related to the distance from the interface. This transformed image always has a straight interface, so the interrogation windows can easily be arranged at certain distances from the interface. Accurate measurements near the interface can then be achieved by applying the window deformation algorithm in concert with PIV/IG (interface gradiometry). The displacement of each window is evaluated by using the window deformation algorithm and was found to result in acceptable errors except for the border windows. Quantitative evaluations of this method were performed by applying it to computer-generated images and actual PIV measurements.  相似文献   

4.
Planar laser induced fluorescence in aqueous flows   总被引:2,自引:0,他引:2  
Planar laser-induced fluorescence (PLIF) is a non-intrusive technique for measuring scalar concentrations in fluid flows. A fluorescent dye is used as a scalar proxy, and local fluorescence caused by excitation from a thin laser sheet can be related to dye concentration. This review covers quantitative PLIF in aqueous flows, with discussions of fluorescence theory, experimental methods and equipment, image processing and calibration, and applications of the technique.  相似文献   

5.
波浪环境中垂直射流紊动特性的实验研究   总被引:2,自引:0,他引:2  
利用粒子图像测速技术PIV(particle imagevelocimetry)对有限水深规则波浪环境下垂直射流紊动特性进行了实验研究. 应用相位分析法从测量数据中分离出速度脉动项,用4种不同波高的波浪研究波高对射流紊动特性的影响,对紊动量的分布以及大小进行了分析. 结果表明波高对射流的紊动特性有显著影响,并且对流项对波高的变化较紊动扩散项更为敏感,紊动扩散项量值约是对流项的$1/8\sim1/3$, 在时均化的N-S方程中起的作用不可忽略.   相似文献   

6.
Particle image velocimetry (PIV) processing of free surface flow images often requires the use of digital masks to overcome the problems caused by the interface. In cases where a large number of particle images are collected it is essential that the time-varying boundary between the two phases can be tracked automatically to produce the binary masks. The Radon transform-based technique presented in this paper allows the automatic detection of the air–water interface in a stream of particle images acquired from a single camera. It is applied to time-resolved PIV measurements in the liquid phase of a stratified multiphase flow in a circular pipe. Accuracy estimations are provided using synthetic and real wave profiles. An extension to the more complex case of an overturning wave is also discussed.  相似文献   

7.
A variant of the particle image velocimetry (PIV) technique is described for measuring velocity and density simultaneously in a turbulent Rayleigh-Taylor mixing layer. The velocity field is computed by the usual PIV technique of cross-correlating two consecutive images, and deducing particle displacements from correlation peaks of intensity fields. Different concentrations of seed particles are used in the two streams of different temperature (density) fluids, and a local measure of the density is obtained by spatially averaging over an interrogation window. Good agreement is reported between the first- and second-order statistics for density obtained from this technique and from a thermocouple. Velocity-density correlations computed by cross-correlating individual time series are presented. The errors in the density measurements are quantified and analyzed, and the issue of spatial resolution is also discussed. Our purpose for this paper is to introduce the PIV-S method and validate its accuracy against corresponding thermocouple measurements.  相似文献   

8.
A technique is presented for measuring velocity, density and scalar transport in a buoyant rotating gravity current. Existing methods for combined PIV and PLIF are modified for use in a stratified flow on a rotating table and strategies for beam alignment, index of refraction matching, surface tension matching and photobleaching correction are presented. In addition, the PIV–PLIF technique is modified to resolve the velocity and density fields in a cross-section of the current perpendicular to the mean flow direction, allowing the transport in this direction to be computed. This is done by rotating the plane of the laser sheet 15° to the horizontal. This sheet angle is high enough that the entire cross-section of the current is contained in the viewing area, but low enough that horizontal PIV particle displacements are resolved. The technique is used successfully to measure the transport of buoyant fluid in a non-rotating channel to within 5% of the prescribed flow. Results from a rotating gravity current experiment are then presented and compared with previous experiments.  相似文献   

9.
A method is proposed that allows three-dimensional (3D) two-component measurements to be made by means of particle image velocimetry (PIV) in any volume illuminated over a finite thickness. The method is based on decomposing the cross-correlation function into various contributions at different depths. Because the technique is based on 3D decomposition of the correlation function and not reconstruction of particle images, there is no limit to particle seeding density as experienced by 3D particle tracking algorithms such as defocusing PIV and tomographic PIV. Correlations from different depths are differentiated by the variation in point spread function of the lens used to image the measurement volume over that range of depths. A number of examples are demonstrated by use of synthetic images which simulate micro-PIV (μPIV) experiments. These examples vary from the trivial case of Couette flow (linear variation of one velocity component over depth) to a general case where both velocity components vary by different complex functions over the depth. A final validation—the measurement of a parabolic velocity profile over the depth of a microchannel flow—is presented. The same method could also be applied using a thick light sheet in macro-scale PIV and in a stereo configuration for 3D three-component PIV.  相似文献   

10.
A phase discrimination method for two-phase PIV is presented that is capable of simultaneously separating the two phases from time-resolved stereoscopic PIV images taken in a particle-laden jet. The technique developed expands on previous work done by Khalitov and Longmire (Exp Fluids 32:252–268, 2002), where by means of image processing techniques, a raw two-phase PIV image can be separated into two single-phase images according to particle size and intensity distributions. The technique is expanded through the use of three new image processing algorithms to separate particles of similar size (up to an order of magnitude better than published work) for fields of view much larger than previously considered. It also addresses the known problem of noisy background images produced by high-speed CMOS cameras, which makes the particle detection and separation from the noisy background difficult, through the use of a novel fast Fourier transform background filter.  相似文献   

11.
A kilohertz frame rate cinemagraphic particle image velocimetry (PIV) system has been developed for acquiring time-resolved image sequences of laboratory-scale gas and liquid-phase turbulent flows. Up to 8000 instantaneous PIV images per second are obtained, with sequence lengths exceeding 4000 images. The two-frame cross-correlation method employed precludes directional ambiguity and has a higher signal-to-noise ratio than single-frame autocorrelation or cross-correlation methods, facilitating acquisition of long uninterrupted sequences of valid PIV images. Low and high velocities can be measured simultaneously with similar accuracy by adaptively cross-correlating images with the appropriate time delay. Seed particle illumination is provided by two frequency-doubled Nd:YAG lasers producing Q-switched pulses at the camera frame rate. PIV images are acquired using a 16 mm high-speed rotating prism camera. Frame-to-frame registration is accomplished by imaging two pairs of crossed lines onto each frame and aligning the digitized image sequence to these markers using image processing algorithms. No flow disturbance is created by the markers because only their image is projected to the PIV imaging plane, with the physical projection device residing outside the flow field. The frame-to-frame alignment uncertainty contributes 2% to the overall velocity measurement uncertainty, which is otherwise comparable to similar film-based PIV methods. Received: 11 July 2000 / Accepted: 21 June 2001 Published online: 29 November 2001  相似文献   

12.
Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.  相似文献   

13.
 This paper describes how the accuracy for estimating the location of the displacement-correlation peak in (digital) particle image velocimetry (PIV) can be optimized by the use of a window offset equal to the integer-pixel displacement. The method works for both cross-correlation analysis of single-exposure image pairs and multiple-exposure images. The effect is predicted by an analytical model for the statistical properties of estimators for the displacement, and it is observed in the analysis of synthetic PIV images of isotropic turbulence, and in actual measurements of grid-generated turbulence and of fully-developed turbulent pipe flow. Received: 29 April 1996/Accepted: 29 October 1996  相似文献   

14.
A two-channel PLIF technique that simultaneously quantifies two scalar fields is presented. The technique consists of two independently operated single-color PLIF systems that synchronously image a common region. Two dyes (fluorescein sodium salt and oxazine 725) are excited by two lasers (argon-ion and krypton-ion), and the resulting fluorescence is imaged by a pair of cameras. The two-channel system is used to study mixing between two parallel jets, each transporting a different scalar species. Time-averaged and instantaneous mixing statistics are calculated and used to show the effects of turbulent structure on scalar mixing. In particular, the existence of positive spatial correlations between the two scalar fields is demonstrated in off-axis mixing regions.  相似文献   

15.
We present a laboratory experiment of the initial growth of a turbulent patch in a stably stratified fluid. The patch is created due to a localized source of turbulence, generated by a horizontally oriented and vertically oscillating grid much smaller than the tank size and far from solid boundaries. Synchronized and overlapping particle image velocimetry(PIV) and planar laser induced fluorescence (PLIF) measurements capture the evolution of the patch through its initial growth until it reached a maximum size. The simultaneous measurements of density and velocity fields allow for a direct quantification of the distribution of kinetic energy, buoyancy and degree of mixing within the patch. We can also relate the propagation speed of the turbulent/non-turbulent interface and its thickness to the properties of the turbulent fluid inside the evolving patch. The velocity measurements in this setup indicate significant transient effects inside the patch during its growth. A local analysis of the turbulent/non-turbulent interface provides direct measurements of the entrainment velocity we as compared to the local vertical velocity and turbulent intensity at the proximity of the interface. The detailed information about the growth of localized sources of turbulence in stratified environment might be of use in stealth design of autonomous underwater vehicles.  相似文献   

16.
A new approach for calibration of planar laser-induced fluorescence (PLIF) measurements is presented. The calibration scheme is based on the fact that there is a constant concentration flux through each cross-section of a fluorescent plume in a given flow field and makes use of simultaneous measurements of particle image velocimetry (PIV) and PLIF. The following are the advantages of the current technique: (1) it is experimentally less demanding and (2) it does not require in situ calibration for generating the calibration curves. The technique can be implemented in many experimental setups (both in water and gaseous flows) provided the geometry of the time-averaged scalar field is known. Using the calibration scheme, an analysis is carried out on the measurements of concentration fields in grid turbulence to validate the proposed technique. To demonstrate the feasibility of the scheme, the distributed second-order moments (μ 2), and concentration and velocity correlations ( á uc ñ \left\langle {u^{\prime}c^{\prime}} \right\rangle and á vc ñ \left\langle {v^{\prime}c^{\prime}} \right\rangle ) are computed. Good agreement is found with previous studies. In addition, a quantitative appraisal of a simple closure approximation of the moment-based transport equation is also presented using simultaneous PIV and PLIF.  相似文献   

17.
 In this paper digital processing techniques for PIV (Partical Image Velocimetry) using double-exposed particle images have been studied. It has been found that a pattern matching technique is significantly superior to the traditional autocorrelation method in the case that a large particle displacement between the double exposures is present on the image. In PIV using double-exposed images, the image shifting technique is usually used to solve the directional ambiguity problem. The performance of PIV using autocorrelation technique is dependent on the flow speed and the amount of image shift applied. This dependence, for example, causes a difficulty of autocorrelation in flows close to a solid boundary. The present study shows that a pattern matching technique eliminates such a difficulty. At the same signal-to-noise ratio, the pattern matching techndique has a better spatial resolution than that of autocorrelation. In concert with the pattern matching technique, PID (Particle Image Distortion) can be applied to double-exposed images, further improving the reliability and accuracy of velocity estimates of PIV in the presence of large velocity gradients. Generally speaking, PIP-matching and PID extend the validity of PIV using double-exposed images. The total processing time required by the PIV using the pattern matching technique and one PID iteration is of the same order as that required by the PIV using autocorrelation. Received: 7 July 1995 / Accepted: 11 September 1997  相似文献   

18.
A technique is proposed for the processing of digital particle image velocimetry (PIV) images, in one single step providing direct estimates of fluid velocity, out-of-plane vorticity and in-plane shear rate tensor. The method is based on a generalization of the standard PIV cross-correlation technique and substitutes the usual discrete cross-correlation of image pairs with a correlation of interpolated two-dimensional image intensity functions, being subject to affine transformations. The correlation is implemented by using collocation points, on which image intensity values are interpolated. The resulting six-dimensional correlation function is maximized using a general purpose optimization algorithm. The use of the method is demonstrated by application to different types of synthetically generated image pairs constructed with known particle displacement functions. The resulting errors are assessed and compared with those of a representative standard PIV method as well as with those of the present technique using no differential quantities in the search of the peak location. The examples demonstrate that significant improvements in accuracy can be obtained for flow fields with regions containing strong velocity gradients.  相似文献   

19.
 In this paper, a new method of measuring scalar behavior in bulk aqueous fluid flows is presented. Using a simple ratiometric scheme, laser induced fluorescence from organic dyes can be normalized so that direct measurements of a scalar in the flow are possible. The technique dual emission laser induced fluorescence (DELIF) relies on normalizing the fluorescence emission intensity of one dye with the fluorescence emission intensity of a second dye. Since each dye fluoresces at a different wavelength, one can optically separate the emission of each dye. This paper contains an overview of the basic ratiometric technique for pH and temperature measurements as well as the spectral properties of nine water soluble dyes. It also covers the three most significant sources of error in DELIF applications. To demonstrate the technique, steady state turbulent jet mixing and temperature fields in a thermal plume were quantified. The accuracy was camera limited at under 3% of the fluorescence ratio which corresponds to 0.1 pH units or 1.8 °C. Received 7 June 1996/Accepted 17 June 1997  相似文献   

20.
 New techniques are developed to improve the velocity flow-field measurement capability within a free-surface boundary layer region on which progressive capillary-gravity waves are present. Due to the extremely thin but rather vortical characteristics of the aforementioned boundary layer, conventional particle image velocimetry (PIV) methods fail to estimate velocity (and vorticity) vectors at an acceptable detection rate. This failure is a direct consequence of optimal PIV parameters that are difficult to achieve in practice for such flow situations. A new technique, Sub-pattern PIV, is developed. This method has features similar to both the super-resolution PIV (Keane et al. 1995) and the particle image distortion (PID) technique (Huang et al. 1993), but is predicated upon a very differential philosophy. Another difficulty that arises in experiments to investigate surface boundary layer flows is that the oscillating and deforming air–water interface has a mirror-like behavior that affects the images, and generates very noisy data. An alternative experimental setup that utilizes the Brewster angle phenomenon is adopted and the specular effects of the free-surface are removed successfully. This Brewster angle imaging, along with the Sub-pattern PIV technique, is used for the target application – a free-surface boundary layer investigation. It proved to be very effective. The methodology of both techniques is discussed, and the modified PIV procedure is validated by numerical probabilistic simulations. Application to the capillary-gravity wave boundary layer is presented in a subsequent paper. Received: 31 July 1997/Accepted: 4 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号