首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
对Q460D和Q690D高强度钢材对接焊缝进行低温冲击试验,得到低强和等强两种匹配下,焊缝区、热影响区的冲击功值,讨论了两种匹配形式下冲击功值AKV随温度的变化规律。结果表明:焊缝区和热影响区随温度降低韧性逐渐变差,热影响区的AKV总是大于焊缝区,表明经过焊接热循环后,热影响区的冲击韧性处于较高的水平;采用低匹配连接,焊缝区和热影响区的冲击功均大于等匹配,说明低匹配可获得良好的吸收能量的能力。同时,利用Boltzmann函数对试验结果进行拟合分析,将高强度钢材两种匹配下焊缝区和热影响区的韧性进行了对比。由试验数据比较可知,焊缝区吸收能量的能力较差,为主要断裂部位。  相似文献   

2.
通过对22个Q690高强钢螺栓连接接头的静力拉伸试验,综合分析了其连接的破坏形态、受力性能和匹配性,讨论了关键参数对承载性能的影响。研究表明:螺栓横向布置时,承载力随螺栓端距、边距和间距的增大呈线性增长;螺栓纵向布置时,连接的承载力仅随边距增大而增大,螺栓端距和间距的影响不超过5%。螺栓孔径对承载力的影响主要体现在净截面面积上,螺栓强度等级会影响连接的初始滑移荷载,而对极限承载力影响较小,与Q690钢材匹配的高强钢螺栓建议取10.9级以上。EC3规范能较好地反映端距和边距的影响关系,但偏于保守,ANSI规范的拟合结果与试验值更接近。上述研究结果可为国产高强度钢材螺栓连接的设计理论和方法提供基础数据。  相似文献   

3.
基于三维数字图像相关技术(3D-DIC),结合裂尖定位、链式匹配、相关系数阈值化算法,测量金属焊接件裂纹端部的全场三维变形,分析焊接对材料断裂力学行为的影响。实验中采用预制疲劳裂纹的紧凑拉伸试件,以Q235钢为母材,通过改变焊缝位置制备四种不同试件:无焊缝母材试件、焊缝位于中央试件、焊缝偏离中央5mm试件、焊缝偏离中央8mm试件。实验结果显示,3D-DIC既能获得裂纹张开导致的面内变形,提取裂纹尖端张开位移,还能测量裂尖材料屈服导致的局部离面凹陷。对比不同焊接件的裂纹端部场发现,裂纹与焊缝的相对位置对试件断裂力学行为有很大影响。当裂纹位于焊缝处,裂尖张开位移与局部凹陷最为显著,热影响区内裂纹端部的变形也明显大于母材,因此都具有比母材更高的断裂韧度。随着载荷增加,裂纹周围的焊缝边界处容易产生应力集中和局部损伤,最终影响材料的破坏行为。上述结果表明,3DDIC可用来分析非均匀材料的断裂力学行为,有望为实际断裂问题的解决和断裂力学理论的验证与完善提供有效的实验依据。  相似文献   

4.
本文基于超声疲劳振动技术,设计了三种焊接接头试样(圆形对接焊接试样及其喷丸处理试样和板状十字焊接试样),并利用超声疲劳试验系统测定了其超高周疲劳性能,实验应力比为-1,频率20kHz,实验在室温条件下进行。实验结果表明,圆形对接焊接接头的疲劳性能高于板状十字焊接接头,喷丸处理能提高焊接接头的疲劳强度。将焊接接头的疲劳性能与对应形状的母材进行对比分析,发现焊接接头的疲劳性能远低于母材。在相同疲劳寿命的条件下,圆形焊接接头试件的疲劳强度仅为母材的45%,十字焊接接头试件仅为母材的29%;圆形对接接头在5×106周次以后,试件仍然发生疲劳断裂,而板状十字焊接接头在超高周区域(107~109周次)存在疲劳极限。超声疲劳断口的扫描电子显微镜分析结果显示,圆形焊接接头试件断口位置主要位于熔合区的焊趾处或焊接接头表面几何非连续处,十字接头试件断口位于焊趾处;焊接接头试件裂纹萌生于焊接缺陷、试样表面夹杂或熔合区的不连续处;喷丸处理对焊接接头的裂纹萌生机制没有显著影响。  相似文献   

5.
首先对两组焊接加劲T-stub节点进行了静力拉伸试验,对比分析了Q690高强钢与Q345普通钢T-stub节点的力学性能。然后采用ABAQUS程序对节点进行了有限元分析,获取了节点荷载-位移曲线、初始刚度、塑性承载力;与试验结果进行对比,验证了有限元模型的有效性;研究了不同设置方式和长宽比的加劲肋对节点刚度、强度、变形能力的影响。研究表明,Q690高强钢T-stub节点的塑性承载力比Q345钢至少提高28%左右,而延性及变形能力较差。采用单边设置加劲肋的方式对节点承载力的影响较小;双边设置加劲肋可以显著提高节点的刚度和承载能力,分别提高1.35和1.43倍左右,但极限后承载力和刚度退化明显加快。当加劲肋长宽比en/et1.0时,对节点的力学性能影响较大;当长宽比en/et≥1.0时,对节点力学性能的影响甚微。  相似文献   

6.
焊接热影响区断裂性能试验研究   总被引:4,自引:0,他引:4  
钢框架梁柱节点在最近几次地震中经历了大量断裂破坏现象。可以采用杆端非线性弹簧模型对这种破坏模式进行数值模拟。为了确定断裂分析模型的参数,本文进行了结构钢(Q235c,Q345c)焊接热影响区断裂性能试验研究,获得了两种材料在焊接热影响区的JR阻力曲线。通过比较不同的断裂准则,考虑了裂纹失稳扩展前的稳态裂纹累计,根据J积分撕裂模量法建立了裂纹失稳的失效评定图。采用两种材料分别制作了一组外形尺寸一致,初始裂纹尺寸不同的单边裂纹焊接板,测出相应的极限拉伸应力,并和理论曲线进行了对比。最后,对于本文研究结果的适用范围做了说明。  相似文献   

7.
铝合金焊接结构是航天领域的常用结构。实验过程中焊接接头出现了低强度破坏,主要是由焊接接头变形不协调引起的。为了更好地研究焊接接头的破坏机理,采用纳米压痕实验和微拉伸实验对焊接接头的微区材料力学性能进行实验研究,得到焊接接头不同区域的弹性模量、屈服极限、强度极限、延伸率的分布规律。分析了自焊缝中心向母材区域过渡时各力学性能的变化趋势,本文结果可为焊接接头破坏机理的研究提供数据基础。  相似文献   

8.
这里所说“弹塑性材料”是指塑性良好的金属材料,如有裂缝存在,在载荷作用下,裂缝开裂前先在其尖端产生大量的塑性变形。若用尺K_(Ic)法测定这种材料的断裂韧度是困难的,因为为了达到基本上符合线弹性理论的条件,不能不用厚度很大的试件,借以限制塑性区的发展。这是事实上往往做不到的,而且实际上也使测定工作失去了意义。一般来说,化工厂压力容器用钢材就属于这一类材料。 压力容器为什么迫切需要应用断裂力学? 过去化工厂用压力容器采用的是20g、20MnMo一类低强度钢材,其屈服强度一般在25至35公斤/毫米~2范围内,塑性比较良好。容器直径最大不超过1米左右。自化工厂向大型化发展以来,  相似文献   

9.
为了进一步研究新型PEC柱-钢梁T形件焊接加强型中节点的抗震性能,考虑柱轴压力、PEC柱布置方式和钢板组合截面类型等设计参数,设计制作了4个中节点1∶1.6缩尺模型试件,并对其进行水平低周往复荷载试验,观测记录了各试件试验中钢材屈服或屈曲与混凝土裂缝与压溃现象,得到试件的荷载-位移滞回曲线和破坏模式。根据试验结果分析了试件的承载能力、节点连接转动刚度退化、耗能能力和节点传力机理等抗震性能。结果表明:PEC柱组合截面翼缘采取卷边措施增强了核心区混凝土的约束作用;PEC柱轴压力提高了节点的初始转动刚度,而受力变形过程中的二阶效应降低了其抗弯承载力并加快了梁截面进入屈服的损伤进程;所有试件均表现出良好的自复位功效;所有试件破坏模式均为加强T形件端部焊缝附近梁截面形成塑性铰,更好地满足"强节点弱构件"的设计要求。上述结果有助于对PEC柱-钢梁节点抗震性能的认识,可为PEC柱-钢梁组合结构设计规范制订以及工程应用提供参考。  相似文献   

10.
结构抗倒塌性能是维系结构震后整体性和实现"大震不倒"设计标准的关键所在。为研究新型PEC柱(强轴)-钢梁(BRS)组合框架结构的层间子结构倒塌机理,按1∶2缩尺比例设计制作1榀组合框架层间子结构试件并进行拟静力抗震试验。基于试验现象记录和测试数据整理,分析了试件的破坏过程、滞回特性、水平抗侧刚度退化、耗能能力、水平侧移模式与塑性破坏机构等抗震性能。研究结果表明:对穿螺栓连接实现了节点区混凝土斜压带传力模式,且梁端截面削弱使梁端出现塑性铰远离节点区,较好满足了"强节点弱构件"的抗震要求;试件位移延性系数μ_u=4.36,最大等效黏滞阻尼比(ζ_(eq))_(max)=0.344,具有较好的抗震延性和耗能能力;试件水平抗侧刚度沿高度分布均匀,呈现理想倒三角形侧移模式;试件最终破坏模式为梁端削弱截面屈服形成塑性铰的理想塑性破坏机构,且其承载力下降到极限承载力85%时,对应层间相对侧移和节点转角均超过罕遇地震作用下层间侧移限值1/30,试件具有良好的抗倒塌能力。  相似文献   

11.
大亚湾中微子地下实验室场地的工程地质条件评价   总被引:1,自引:0,他引:1  
中微子实验目的是测定中微子混合角θ13,这是当前国际粒子物理、核物理、天体物理和宇宙学中一个急待解决的关键问题。目前研究中微子振荡一个国际前沿是利用反应堆中微子实验测量中微子混合角θ13。其地下实验室对场地工程地质条件和环境要求极高。大亚湾核电站的功率高,反应堆紧邻位于排牙山南麓实验预选场址;浑厚的花岗岩山体地下空间可屏蔽宇宙线本底,能提高混合角θ13量测精度。本文通过地形测绘、工程地质调查、综合地球物理勘探、钻探、孔内测试(地应力、钻孔电视和声波)和室内实验,系统分析研究了场址区工程地质条件,得出场区地层岩性和构造断裂不发育,燕山期花岗岩体完整,强度高,地应力不高,地下水主要赋存于裂隙中,岩体渗透系数很小的结论。拟选4个实验厅位置的岩体均属Ⅰ~Ⅱ类围岩,连接隧道的围岩81%属Ⅰ~Ⅲ类。工程地质条件评价结果说明,大亚湾中微子地下实验室可望成为世界上投资少精度最高的测量θ13理想场址。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号