首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Virtual Fields Method (VFM – Pierron and Grediac, 2012), an inverse method based on the principle of virtual work (PVW), is being increasingly used to estimate mechanical properties of materials from full-field deformations obtained from techniques such as Digital Image Correlation, moiré and speckle interferometry and grid methods. By making specific choices for virtual fields (VFs) in PVW, one obtains a system of algebraic equations, which is then solved for the unknown material constants. Recently, a new variant of VFM, known as the Eigenfunction Virtual Fields Method (EVFM) has been proposed (Subramanian, 2013). In EVFM, principal components of the measured (i.e. true) strain fields are used to systematically generate VFs. We extend EVFM to orthotropic elastic materials in this work, and estimate the relevant material parameters from full-field strain data generated from a finite-element model of an unnotched Iosipescu test. Varying levels of Gaussian white noise are added to the synthetic strain data to evaluate the sensitivity of EVFM to input noise. It is observed that for low to moderate noise, the material properties estimated by the proposed method are relatively insensitive to noise. However, when noise levels are high, the proposed method yields large variance in some of the computed properties when compared to the state-of-the-art optimized piecewise continuous VFM (Toussaint et al., 2006; Pierron and Grediac, 2012). Some of the large variance in properties estimated from noisy data using EVFM is traced to the sensitivity of the third dominant eigenfunction and modifications to the proposed method to address this issue are suggested.  相似文献   

2.
The Virtual Fields Method (VFM) and the Eigenfunction Virtual Fields Method (EVFM) are inverse techniques for estimating constitutive properties from full-field experimental data. In these, a set of virtual fields is used in the Principle of Virtual Work (PVW) to yield a system of algebraic equations for the unknown material parameters. In a typical experiment, one does not know the distribution of tractions over the external surface of the specimen, but the total force is generally measured. In order to still enable evaluation of the external virtual work integral that appears in PVW, in all the work to date on Virtual Fields methods, the virtual displacements are restricted to be uniform over the portion of the exterior surface where tractions are prescribed so that the external virtual work is simply the inner product of the known total force vector and the uniform value of the chosen virtual displacement vector. In this work, we show that this constraint can be relaxed to obtain a more flexible version of EVFM. The proposed modification is used to obtain orthotropic elastic constants from a simulated unnotched Iosipescu test, and is shown to yield tighter estimates than previously obtained wherein the boundary virtual displacements were constrained to be uniform. This approach, which is novel to Virtual Fields methods, allows us to include domains in the interior of the specimen and therefore, results in an EVFM formulation capable of dealing with material heterogeneity, missing data and discontinuities in specimen geometry.  相似文献   

3.
The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Results are discussed and improvements of the method are proposed.  相似文献   

4.
This work extends previous efforts in plate bending of Virtual Fields Method (VFM) parameter identification to include a general 2-D anisotropic material. Such an extension was needed for instances in which material principal directions are unknown or when specimen orientation is not aligned with material principal directions. A new fixture with a multi-axial force configuration is introduced to provide full-field strain data for identification of the six anisotropic stiffnesses. Two paper materials were tested and their Q ij compared favorably with those determined by ultrasonic and tensile tests. Accuracy of VFM identification was also quantified by variance of stiffnesses. The load fixture and VFM provide an alternative stiffness identification tool for a wide variety of thin materials to more accurately determine Q 12 and Q 66.  相似文献   

5.
The present paper deals with the use of simulated experiments to improve the design of an actual mechanical test. The analysis focused on the identification of the orthotropic properties of composites using the unnotched Iosipescu test and a full-field optical technique, the grid method. The experimental test was reproduced numerically by finite element analysis and the recording of deformed grey level images by a CCD camera was simulated trying to take into account the most significant parameters that can play a role during an actual test, e.g. the noise, the failure of the specimen, the size of the grid printed on the surface, etc. The grid method then was applied to the generated synthetic images in order to extract the displacement and strain fields and the Virtual Fields Method was finally used to identify the material properties and a cost function was devised to evaluate the error in the identification. The developed procedure was used to study different features of the test such as the aspect ratio and the fibre orientation of the specimen, the use of smoothing functions in the strain reconstruction from noisy data, the influence of missing data on the identification. Four different composite materials were considered and, for each of them, a set of optimized design variables was found by minimization of the cost function.  相似文献   

6.
The present paper deals with full-field strain measurement on glass/epoxy composite tensile specimens submitted to high strain rate loading through a split Hopkinson pressure bar (SHPB) device and with the identification of their mechanical properties. First, the adopted methodology is presented: the device, including an Ultra-High Speed camera, and the experimental procedure to obtain relevant displacement maps are described. The different full-field results including displacement, strain and acceleration maps for two mechanical tests are then addressed. The last part of the paper deals with an original procedure to identify stiffnesses on this dynamic case only using the actual strain and acceleration maps (without the applied force) by using the Virtual Fields Method. The results provide very promising values of Young’s modulus and Poisson’s ratio on a quasi-isotropic glass-epoxy laminate. The load reconstructed from the moduli and strains compares favourably with that from the readings.  相似文献   

7.
Experimental Mechanics - This work presents a methodology for reconstructing full-field surface pressure information from deflectometry measurements on a thin plate using the Virtual Fields Method...  相似文献   

8.
The aim of the present study is to retrieve all the anisotropic plastic constitutive parameters from uniaxial loading. A complex geometry which can provide very heterogeneous stress states in a uniaxial tensile test was chosen for steel sheet specimens. A digital image correlation technique was used for the full-field heterogeneous strain measurement. The orthotropic Hill1948 yield criterion with Swift isotropic hardening was adopted as an elasto-plastic constitutive model. The virtual fields method (VFM) was employed as an inverse analytical tool to determine the constitutive parameters. All the parameters were successfully identified using the VFM by combining two tensile test results obtained in rolling and transverse directions.  相似文献   

9.
This paper presents an effective methodology to characterize all the constitutive (elastic) parameters of an orthotropic polymeric foam material (Divinycell H100) in one single test using Digital Image Correlation (DIC) in combination with the Virtual Fields Method (VFM). A modified Arcan fixture is used to induce various loading conditions ranging from pure shear or axial loading in tension or compression to bidirectional loading. A numerical optimization study was performed with different loading angles of the Arcan test fixture and off-axis angles of the principal material axes. The objective is to identify the configuration that gives the minimum sensitivity to noise and missing data on the specimen edges, which are the two major issues when identifying the stiffness components from actual DIC measurements. Two optimized Arcan test configurations were chosen. The experimental results obtained for these two optimized test configurations show a significant improvement of the measurement accuracy compared with a pure shear load configuration. The larger sensitivity of the pure shear test to missing data as opposed to the tensile test is also evident from the experimental data and confirms the analysis from the optimization study. The recovery of missing data along the specimen edges is a promising way to further improve the identification results.  相似文献   

10.
This study deals with the identification of macroscopic elastic parameters of a layer-to-layer interlock woven composite from a full-field measurement. As this woven composite has a coarse microstructure, the characteristic length of the weaving is not small as compared to the specimen size. A procedure based on an inverse identification method and full-field digital image correlation kinematic measurement is proposed to exploit a three-point bending test on short coupons to characterize the out-of-plane shear modulus. Each step of the proposed procedure is presented, and their respective uncertainty is characterized with the help of numerical simulations. The shear modulus is identified with an accuracy of about 1.5 % and is 15 % lower than the estimate obtained through Iosipescu tests. The proposed procedure shows a correlation between the ideal mesh size and the weaving period. It also reveals that the actual boundary conditions deviate from the ideal ones and hence a special attention is paid to their optimization.  相似文献   

11.
This paper presents a novel methodology for the identification of damping of isotropic plates. It relies on forced inertial excitation of a clamped plate and full-field curvature measurements using a suitable optical technique. Using the Virtual Fields Method, it is shown that the damping parameter is easily related to the curvature field, even on a non-resonant plate. This paper opens a totally new field of investigation for damping identification. To cite this article: A. Giraudeau, F. Pierron, C. R. Mecanique 331 (2003).  相似文献   

12.
In this paper, several approaches available in the literature for identifying the constitutive parameters of linear elastic materials from full-field measurements are presented and their sensitivity to a white noise added to the data is compared. The first investigated approach is the virtual fields method (VFM). It is shown that the uncertainty of the parameters identified with the VFM when a white noise is added to the data depends on the choice of a relevant set of virtual fields. Optimal virtual fields exist, thus minimizing the uncertainty and providing the “maximum likelihood solution”. The other approaches investigated in this paper are based on finite element model updating (FEMU). It is proved that FEMU approaches actually yield equations similar to the ones derived from the VFM, but with nonoptimal sets of virtual fields. Therefore, the FEMU approaches do not provide the “maximum likelihood solution”. However, the uncertainty of FEMU approaches varies dramatically with the cost function to minimize. On one hand, the FEMU approach based on the “displacement gap” minimization yields equations which are very close to the ones of the VFM approach and therefore, its uncertainty is almost the same as the VFM one. On the other hand, it is shown that other approaches based on the “constitutive equation gap” minimization or the “equilibrium gap” minimization provide biased solutions. For all the approaches, very fast algorithms, converging in only two iterations, have been devised. They are finally applied to real experimental data obtained on an orthotropic composite material. Results confirm the success of two methods: the VFM approach which provides the “maximum likelihood solution” and the FEMU approach based on the “displacement gap” minimization.  相似文献   

13.
The present study focuses on the identification of the evolution of the local elasto-plastic properties of an Al 5456 FSW weld. To make the best use of the data collected using digital image correlation and to obtain an accurate identification of the evolution of the mechanical properties throughout the weld, an inverse procedure based on the Virtual Fields Method is proposed. Then, the strain-rate dependence of these properties is investigated by performing a set of tensile tests with a cross-head displacement speed evolving from 0.01 mm.s???1 to 76 mm.s???1. Identification of the evolution of the plastic properties throughout the weld with high spatial resolution has been achieved, and results from our study indicate that the plastic parameters in the center of the weld undergo a significant change even at low strain-rate (10 s???1).  相似文献   

14.
The virtual fields method (VFM) has been specifically developed for solving inverse problems from dense full-field data. This paper explores recent improvements regarding the identification of elasto-plastic models. The procedure has been extended to cyclic loads and combined kinematic/isotropic hardening. A specific attention has also been given to the effect of noise in the data. Indeed, noise in experimental data may significantly affect the robustness of the VFM for solving such inverse problems. The concept of optimized virtual fields that minimize the noise effects, previously developed for linear elasticity, is extended to plasticity in this study. Numerical examples with models combining isotropic and kinematic hardening have been considered for the validation. Different load paths (tension, compression, notched specimen) have shown that this new procedure is robust when applied to elasto-plastic material identification. Finally, the procedure is validated on experimental data.  相似文献   

15.
Moiré interferometry is an effective full-field deformation measurement technique and has been utilized for mechanical behavior analysis of materials and structures. For isotropic materials, Moiré patterns can be obtained by performing standard tests, such as, tensile and bending tests, to calculate the displacement and strain. Then, the mechanical properties can be characterized. However, standard tests are not sufficient to characterize the mechanical parameters of anisotropic materials due to the complexity of their material properties. Thus, in this work, Moiré interferometry was combined with the Virtual Fields Method to obtain the four in-plane elastic constants (Q11, Q22, Q12, and Q66) of orthotropic materials in the form of a diametrically compressed disk. Firstly, according to finite element method simulation results, optimized parameters can be achieved when the principal direction of the material does not coincide with the loading direction, making the loading configuration antisymmetric. Therefore, Moiré interferometry experiment was simulated to demonstrate the feasibility of measurement in the antisymmetric configuration. Finally, the Q11, Q22, Q12 and Q66 values of a unidirectional carbon fiber composite were measured in a real Moiré interferometry experiment using the proposed method, yielding results that agreed closely with those obtained using the strain gauges.  相似文献   

16.
三维编织复合材料模量的双尺度有限元计算   总被引:5,自引:1,他引:4  
针对三维编织复合材料的力学性能进行了双尺度有限元(TSA)数值计算,给出了计算模型和算法过程,并将数值结果与文献中的实验数据进行了比较,验证了算法的物理准确性。编织复合材料的力学性能不仅依赖于材料的基本组份,也与细观构造相关。双尺度有限元计算可以数值模拟出三维编织复合材料的整体力学性能,从而为材料的研发提供指导。本文的双尺度有限元三维数值计算方法可以推广到其他增强/孔隙等多相复合材料的数值模拟。  相似文献   

17.
Full-field surface 3D shape and displacement measurements using a single commercial unfocused plenoptic camera (Lytro Illum) are reported in this work. Before measurements, the unfocused plenoptic camera is calibrated with two consecutive steps, including lateral calibration and depth calibration. Each raw image of a checkerboard pattern recorded by Lytro Illum is first extracted to an array of sub-aperture images (SAIs), and the center sub-aperture images (CSAIs) at diverse poses are used for lateral calibration to determine intrinsic and extrinsic parameters. The parallax maps between the CSAI and the remaining SAIs at each pose are then determined for depth parameters estimation using depth calibration. Furthermore, a newly developed physical-based depth distortion model is established to correct the serious distortion of the depth field. To realize shape and deformation measurements, the raw images of a test sample with speckle patterns premade on its surface are captured by Lytro Illum and extracted to arrays of SAIs. The parallax maps between the CSAI and the target SAIs are obtained using subset-based digital image correlation. Based on the pre-computed intrinsic and depth parameters and the disparity map, the full-field surface 3D shape and displacement of a test object are finally determined. The effectiveness and accuracy of the proposed approach are evaluated by a set of experiments involving the shape reconstruction of a cylinder, in-plane and out-of-plane displacement measurements of a flat plate and 3D full-field displacement measurements of a cantilever beam. The preliminary results indicate that the proposed method is expected to become a novel approach for full-field surface 3D shape and displacement measurements.  相似文献   

18.
19.
This article reviews recently developed methods for constitutive parameter identification based on kinematic full-field measurements, namely the finite element model updating method (FEMU), the constitutive equation gap method (CEGM), the virtual fields method (VFM), the equilibrium gap method (EGM) and the reciprocity gap method (RGM). Their formulation and underlying principles are presented and discussed. These identification techniques are then applied to full-field experimental data obtained on four different experiments, namely (i) a tensile test, (ii) the Brazilian test, (iii) a shear-flexural test, and (iv) a biaxial test. Test (iv) features a non-uniform damage field, and hence non-uniform equivalent elastic properties, while tests (i), (ii) and (iii) deal with the identification of uniform anisotropic elastic properties. Tests (ii), (iii) and (iv) involve non-uniform strain fields in the region of interest. Working group “Identification” of the French CNRS research network (GDR 2519) “Mesures de champs et identification en Mécanique des Solides / Full-field Measurements and Identification in Solid Mechanics”.  相似文献   

20.
三维机织复合材料力学性能研究进展   总被引:27,自引:0,他引:27  
易洪雷  丁辛 《力学进展》2001,31(2):161-171
对近年来关于三维机织复合材料力学性能的研究作了综述和归纳。研究表明,三维机织复合材料的力学性能不仅取决于纤维和基体的性能,而且与三维增强结构形式密切相关。通过对三维机织增强结 构的研究,获得了机织复合材料的细观结构和主要力学特征的关系,强调了增强纤维束轴向几何特征和截面形状对材料细观结构的重要影响。试验研究集中于观测机织复合材料的破坏模式,以分析三维机织结构对阻止损伤微裂纹扩展的贡献。理论分析方面较为成熟的研究是三维机织复合材料线弹性力学性能,其研究基础是层板理论模型、取向平均模型和有限元分析模型。而对强度及损伤方面的研究还有待于进一步的工作。本文对当前研究工作中的关键问题进行分析,并就今后的研究工作发表一些看法。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号