首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.  相似文献   

2.
Twin-screw multiphase pumps are employed increasingly to convey multiphase mixtures of crude oil, accompanying fluids, associated gas and solid particles. They are positive displacement pumps and suitable for handling products containing liquid accompanied by large amounts of gas. Experimental investigations on the conveying characteristic, namely measuring the delivered volume flow as a function of the pressure difference, provide results for selected mixtures. By means of the on hand work, the influence of sorption phenomena occurring due to pressure variations alongside the conveying process on the conveying characteristics of twin-screw pumps delivering mixtures of oil and gases is measured. The employed gases are air and carbon dioxide, which differ strongly in solubility in oil. All experiments are conducted in a closed loop test facility, where oil and gas volume flows are mixed before the inlet and separated after the outlet of the multiphase pump. In order to simulate the influence of the suction side pressure drop in the reservoir on the conveying characteristic, packed beds are employed as oil-filed model. Sorption processes inside of the oil-field model and within the multiphase pump affect the conveying behaviour significantly. The two-phase flow in the inlet and outlet pipe is visualised by means of a capacitance tomography system. Results show that the oil fraction of the total delivered volume flow is decreased due to desorption at the pump inlet. The gas fraction at the pump outlet is further decreased due to absorption. Experimental results are compared to calculated solubilities of the on-hand gases in oil and to the theoretically derived gas volume flow fraction expected at the multiphase pump.  相似文献   

3.
Air injection as a stabilization method is evaluated for flow boiling in a micro tube. Pyrex glass tube coated by ITO film is employed as a test tube for flow visualization with water as a working fluid. Air bubble and liquid slug lengths are controlled by changing air and liquid mass velocities. Wall temperatures and inlet/outlet pressures show very large fluctuations during flow boiling without air injection. Severe reverse flow is also observed from flow visualization. On the other hand, wall temperature and inlet/outlet pressures as well as visualized flow patterns become very stable with air injection. In addition, much higher heat transfer coefficients are obtained for air injected cases. It is observed from the flow visualization that the flow becomes much stable and shows regular patterns.  相似文献   

4.
Loss of flow transients with reference to L.O.F. accidents in nuclear reactor cores have been systematically studied employing freon 12 as coolant. Two pressures (with reference to BWR and PWR characteristic liquid to vapour densities ratios), three periods of the coast-down flow transients during the simulated pump trips, and different specific mass flow rates have been investigated. The uniformly heated channel (L = 200 cm, D = 0.75 cm), instrumented with wall thermocouples and inlet to outlet differential pressure enabled recording of the following transients, inlet specific mass flowrate, inlet pressure, inlet to outlet Δp, inlet fluid temperature, outlet wall temperature, outlet bulk temperature.Through the wall temperature being close to the outlet it is possible to detect the onset of DNB and hence the time to DNB from the beginning of the flow transient. All the experimental runs (105) have been systematically compared with the G.E. (PEPE) code with the introduction of a CNEN DNB freon correlation. The results enable a series of conclusions which are extensively shown in the paper.  相似文献   

5.
Jet pump diffuser performance is analyzed, both in terms of past experimental work dealing with the high inlet flow distortions involved and in the sense that this problem is amenable to predictive investigation by computational fluid dynamics techniques. In these highly nonuniform flow conditions, diffusers are seen to justify their inclusion in a jet pump design, for regaining static pressure downstream of the vacuum chamber, even though their performance in effectiveness terms is lowered by about two thirds at high inlet glow distortion levels. A satisfactory correlation has been found between outlet and inlet conditions and diffuser area ratio, extending well beyond past experimental published results for diffuser geometry and distorted inlet flows.  相似文献   

6.
Refrigerant R-410a flow distribution is experimentally studied in a test section simulating a parallel flow heat exchanger having vertical headers with two pass configuration. Tubes are heated to yield a test section outlet superheat of 5 °C with inlet quality of 0.3. Mass flux is varied from 50 kg/m2 s to 70 kg/m2 s. Effects of inlet and outlet locations are investigated in a search for an optimum configuration. Results show that, significant liquid flows through bottom channels, and less liquid is supplied to top channels. As for the inlet location, better flow distribution (pressure drop as well) is obtained for top inlet as compared with middle inlet. As for the outlet location, top or bottom outlet is better than middle outlet. Correlations are developed for the fraction of liquid or gas taken off by downstream channel as a function of header gas Reynolds number at immediate upstream. The correlations may be used to predict the liquid or gas distribution in a parallel flow heat exchanger having vertical headers. A novel thermal performance evaluation method, which accounts for tube-side flow mal-distribution is proposed.  相似文献   

7.
This paper proposes a new method for equal quality distribution of gas–liquid two-phase flow by partial separate-phase distribution with a dual-header distributor. The upper and liquid (lower) headers are interconnected with five vertical downward arms. A gas–liquid two-phase mixture enters the distributor from the upper header where most of the liquid of the mixture is removed through the downward arms into the liquid header. Hence, firstly, the remaining gas-rich fluid can be uniformly distributed into the outlet branches, and then secondly, the liquid collected in the liquid header can be uniformly re-distributed into the individual outlet branches. Because both distribution processes are conducted in the condition of single or near single-phase flow, mal-distribution of the two-phase flow is essentially eliminated, and a satisfactory equal quality distribution of gas–liquid two-phase flow is reached. Experiments were conducted in an air–water two-phase flow test loop. The inner diameter of the inlet pipe was 60 mm, the superficial velocity ranges of gas and liquid were 3–32 m/s and 0.02–0.17 m/s respectively, and the quality ranged from 0.02 to 0.44. The flow pattern in the inlet pipe included stratified flow, wavy stratified, slug flow, and annular flow. The experimental results showed that this new method could significantly improve the distribution performance of the two-phase flow. The maximum quality deviation between each outlet branch and the inlet pipe is less than ±1% under the conditions of stratified, wavy stratified and slug flows in the upper header, and less than ±5% in annular flow.  相似文献   

8.
The mechanism of low-frequency self-oscillating instability of a one-dimensional two-phase flow in a channel with inlet and outlet hydraulic resistances is considered. The mechanism is based on the sensitivity of the inlet flow rate of the liquid to the pressure variation inside the channel and the sensitivity of the pressure to the variation of the outlet gas flow rate (with a constant mass rate of the liquid-gas phase transition per unit volume). A spectral analysis of the stability of the steady solution of the boundary-value problem for a hyperbolic-type nonlinear system of equations is performed within the framework of a two-velocity model of a gas-liquid flow. Parametric boundaries of the region of instability are obtained. The existence of self-oscillations in this range of parameters is supported by a numerical solution of the unsteady boundary-value problem. Institute of Catalysis, Siberian Division Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 1, pp. 47–53, January–February, 1998.  相似文献   

9.
In this paper, simple and consistent open boundary conditions are presented for the numerical simulation of viscous incompressible laminar flows. The present approach is based on an arbitrary Lagrangian-Eulerian particle method using upwind interpolation. Three kinds of inlet/outlet boundary conditions are proposed for particle methods, a pressure specified inlet/outlet condition, a velocity profile specified inlet/outlet condition, and a fully developed flow outlet condition. These inlet/outlet conditions are realized by using boundary particles and modification to the physical value such as velocity. Poiseuille flows, flows over a backward-facing step, and flows in a T-shape branch are calculated. The results are compared with those of mesh-based methods such as the finite volume method. The method presented herein exhibits accuracy and numerical stability.  相似文献   

10.
Micromixers are vital components in micro total analysis systems. It is desirable to develop micromixers which are capable of rapidly mixing two or more fluids in a small footprint area, while minimizing mechanical losses. A novel planar scaled-up passive micromixer is experimentally investigated in this study. The design incorporates a 7-substream uneven interdigital inlet which supplies two liquid species in a parallel arrangement and promotes diffusion along the side walls. Forty-eight staggered teardrop-shaped obstruction elements located along the channel length combined with 32 side walls protrusions increase the two-fluid interfacial area while converging the flow due to periodic reductions in cross-sectional area. The scaled-up micromixer has a mixing channel length of 110 mm with a mixing channel height and width of 2 and 5 mm, respectively. Experimental investigations are carried out at four locations along the channel length and at Reynolds numbers equal to 1, 5, 10, 25, 50, and 100, where the Reynolds number is calculated based on total two-fluid flow and the mixing channel hydraulic diameter. Flow visualization is employed to study flow patterns, while induced fluorescence (IF), using de-ionized water and low concentration Rhodamine 6G solutions, provides mixing efficiency data. Results show a change in dominant mixing mechanism from mass diffusion to mass advection, with a critical Reynolds number of 25. At high Reynolds numbers, the formation of additional lamellae is observed, as is the formation of Dean vortices in the vicinity of the teardrop obstructions. Of the tested cases, the highest outlet mixing efficiency, 68.5%, is achieved at a Reynolds number of 1, where mass diffusion dominates. At low Reynolds numbers, superior mixing efficiency is due primarily to the implementation of the uneven interdigital inlet. A comparable mixing length is proposed to allow for reasonable comparison with published studies.  相似文献   

11.
航空发动机轴承腔润滑的气液两相均匀流研究   总被引:10,自引:0,他引:10  
基于轴承腔中润滑油的两相均匀流动模型,采用湍流模式和有限差分数值方法计算轴承腔内三维定常N-S方程,对腔内润滑油的气液两相均匀流动特性进行研究,以获得气液两相均匀流条件下润滑油流场、压力场和速度场在轴承腔内的分布情况,分析转子转速、含气率和润滑油进口速度对润滑油出口压力以及润滑油与壁面之间剪切力的影响,同时对单相流和两相均匀流润滑性能差异进行比较.结果表明,转子转速、含气率和润滑油进口速度对润滑油出口压力和腔内壁面与润滑油间的平均剪切力具有不同影响,而采用2种流动模型计算出的轴承腔润滑油出口压力的差异较大,同时支持了开展航空发动机轴承腔润滑两相流动分析的必要性.  相似文献   

12.
A precessing jet flow can be generated naturally by a fluidic nozzle comprising a cylindrical nozzle-chamber with a large sudden expansion at its inlet and a small lip at its outlet. Such a precessing jet flow is offset with respect to the chamber axis, about which it rotates. The aim of the present study is to investigate the influence of the chamber-inlet configuration on the frequency of such precession. Three different inlet configurations, classified as long pipe, smooth contraction, and sharp-edged orifice plate, are tested. It is found that the frequency of precession from the orifice is highest, whereas that of the pipe jet is lowest. These differences appear to result partly from the distinct differences in their respective initial boundary layers.  相似文献   

13.
Friction factors associated with forced flow of de-ionized water over staggered and in-line micro/mini cylinder group plates with 3.5 mm width and 40 mm length, which are made of micro/mini cylinders with hydraulic diameter of 0.5 mm and the heights of 1.0 mm, 0.75 mm, 0.5 mm and 0.25 mm, respectively, have been experimentally investigated over Reynolds number ranging from 25 to 800. The flux and the pressure drop between the inlet and the outlet of micro/mini cylinder group are measured and the experimental results are compared with those of convectional correlations. The investigation shows the value of fRe is approximately the constant in micro/mini cylinder group plates when the flow is purely laminar state. Except test sections with 0.25 mm cylinder height, the values of fRe for other test sections increase when Re > 100, as the results of the appearance of vortex resistance, the enhancement of stream pulse and the acceleration of stream frequency. For test section with 0.25 mm cylinder height, the values of fRe rapidly and oscillatingly increase at Re > 150 due to the influence of the scale effect, tip clearance effect and the roughness effect on the cylinder surface and bottom of micro/mini cylinder group plates. The friction factor in a staggered array is much larger than that at in-line array for micro/mini cylinder group plates and the higher the cylinder height is, the lower the friction factor becomes.  相似文献   

14.
Phase-distribution data have been generated for two-phase (air-water) flow splitting at an impacting tee junction with a horizontal inlet and inclined outlets. This investigation also considered the possibility of full separation at the junction and the effect of the outlet angle of inclination on partial separation at various inlet conditions. A flow loop with the ability to incline the outlets from horizontal to vertical was constructed. The operating conditions were as follows: test section inside diameter (D) of 13.5 mm, nominal junction pressure (Ps) of 200 kPa (abs), near ambient temperature (Ts), inlet superficial gas velocities (JG1) ranging from 2.0 to 40 m/s, inlet superficial liquid velocities (JL1) ranging from 0.01 to 0.18 m/s, inlet qualities (x1) ranging from 0.1 to 0.9, mass split ratios (W3/W1) from 0 to 1.0, and inlet flow regimes of stratified, wavy, and annular. The data reveal that the degree of maldistribution of the phases depended on the inlet conditions, the mass split ratio at the junction, and the inclination angle of the outlets.  相似文献   

15.
Two-phase flow instabilities are highly undesirable in microchannels-based heat sinks as they can lead to temperature oscillations with high amplitudes, premature critical heat flux and mechanical vibrations. This work is an experimental study of boiling instabilities in a microchannel silicon heat sink with 40 parallel rectangular microchannels, having a length of 15 mm and a hydraulic diameter of 194 μm. A series of experiments have been carried out to investigate pressure and temperature oscillations during the flow boiling instabilities under uniform heating, using water as a cooling liquid. Thin nickel film thermometers, integrated on the back side of a heat sink with microchannels, were used in order to obtain a better insight related to temperature fluctuations caused by two-phase flow instabilities. Flow regime maps are presented for two inlet water temperatures, showing stable and unstable flow regimes. It was observed that boiling leads to asymmetrical flow distribution within microchannels that result in high temperature non-uniformity and the simultaneously existence of different flow regimes along the transverse direction. Two types of two-phase flow instabilities with appreciable pressure and temperature fluctuations were observed, that depended on the heat to mass flux ratio and inlet water temperature. These were high amplitude/low frequency and low amplitude/high frequency instabilities. High speed camera imaging, performed simultaneously with pressure and temperature measurements, showed that inlet/outlet pressure and the temperature fluctuations existed due to alternation between liquid/two-phase/vapour flows. It was also determined that the inlet water subcooling condition affects the magnitudes of the temperature oscillations in two-phase flow instabilities and flow distribution within the microchannels.  相似文献   

16.
A circular jet entering an open-ended concentric circular chamber can rotate or precess about the jet axis for certain flow conditions and chamber configurations. Active flow control of a precessing jet provides the ability to influence the flow field inside the chamber and the resulting flow after the chamber exit. Twelve micro-jets surrounding the jet at the chamber inlet are used as actuation. At the chamber exit, four pressure probes and three-component velocity measurement using stereo particle image velocimetry (stereo-PIV) is used to monitor the flow. A phase plane method using signals from the pressure sensors is developed to monitor the location of the jet high-velocity region in real-time. Phase-locked stereo-PIV, triggered by the micro-jet actuation signal, is used to investigate the flow field and validate the pressure phase plane results. The effectiveness of the micro-jet actuation and the validation of the pressure phase plane measurements demonstrate actuation and the sensing needed for future closed-loop control of the precessing jet.  相似文献   

17.
An experimental investigation of a shock wave interacting with one, or several, liquid layer(s) is reported with a motivation towards first wall protection in inertial fusion energy reactor chamber design. A 12.8 mm or 6.4 mm thick water layer is suspended horizontally in a large vertical shock tube in atmospheric pressure argon and subjected to a planar shock wave of strength ranging from M = 1.34 to 3.20. For the single water layer experiments, the shock-accelerated liquid results in a significant increase in end-wall pressure loading (and impulse) compared with tests without water. The end-wall loading can be reduced by more than 50% for a given volume of water when it is divided into more than one layer with interspersed layer(s) of argon. A flash X-ray technique is employed to measure the volume fraction of the shocked water layer and multiple water layers are found to dissipate more energy through the liquid fragmentation process resulting in increased shock mitigation.  相似文献   

18.
The focus of this study lies on turbulent incompressible swirling flows with high swirl intensity. A systematic parameter study is conducted to examine the sensitivity of the mean velocity field in a swirl chamber to changes in the Reynolds number, swirl intensity and channel outlet geometry. The investigated parameter range reflects the typical kinematic flow conditions found in heat transfer applications, such as the cooling of the turbine blade known as cyclone cooling. These applications require a swirl intensity, which is typically much higher than necessary for vortex breakdown. The resulting flows are known as flow regime II and III. In comparison to flow regime I, which denotes a swirling flow without vortex breakdown, these flow regimes are characterized by a subcritical behavior. In this context, subcritical means that the flow is affected by the downstream channel section. Based on mean velocity field measurements in various swirl chamber configurations, it is shown that flow regime III is particularly sensitive to these effects. The channel outlet geometry becomes a determining parameter and, therefore, small changes at the outlet can produce entirely different flow patterns in the swirl chamber. In contrast, flow regime II, as well as flow regime I and axial channel flows, are much less sensitive to changes at the channel outlet. The knowledge about the sensitivity of the flow in different flow regimes is highly relevant for the design of a cyclone cooling system. Cooling systems employing flow regime III can result in a weakly robust flow system that may change completely over the operating range. As a remedy, the swirl intensity needs to be decreased so that flow regime III cannot be reached, which, however, reduces the maximum achievable heat transfer in the cooling system. Alternatively, the flow has to transition back from flow regime III to flow regime II or I before the flow leaves the swirl chamber. Two practical methods are presented. These findings can be directly applied in the design processes of future cyclone cooling systems, and other applications of swirling flow.  相似文献   

19.
We present a new discharge coefficient correction method for the orifice equation for R-123 two-phase flows. In this method, an evaporator is mounted after the orifice as a vapor refrigeration cycle, and the evaporator is used to measure the quality of downstream flow through the orifice. Quality is estimated from the measured temperature and pressure of the evaporator inlet and outlet, respectively, instead of by direct measurement of quality. The condition of upstream flow of the orifice is the liquid state at 3 bar and 60 °C. The liquid flow is changed to two-phase flow after passing through the orifice. Orifice diameters of 300, 350, 400, and 450 μm are used for the experiment, and the results are analyzed. Experiments are conducted for various conditions of flow rate between 20 and 70 ml/min and for cooling loads of 60, 80, and 100 W. The results show that the quality of flow downstream from the orifice can be calculated using the enthalpy difference between the inlet and outlet of the evaporator. An equation to determine the discharge coefficient is formulated as a function of quality. We expect that these results can be used to help design a small cooling system.  相似文献   

20.
为研究环缝宽度对旋转爆震发动机(rotating detonation engine, RDE)工作特性的影响,在非预混RDE中进行实验,同时采用高频压力传感器、离子探针和高速摄影等测量设备,在同一入口质量流率的条件下,改变空气进气环缝宽度和燃烧室环缝宽度。获得了单波、双波、四波对撞及混合传播模态;当燃烧室环缝宽6 mm时,增加空气进气环缝宽度,爆震波由四波对撞转变为同向双波,最终以单波形式传播;而燃烧室环缝宽10或15 mm时,空气进气环缝宽度对爆震波传播模态的影响较小;此外,四波对撞模态下,爆震波压力峰值和离子信号峰值低于单波和双波模态时的值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号