首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper,applying perturbation method to von Kármán-type onlinear largedeflection equations of orthotropic plates by taking deflection as perturbation parameter.the postbuckling behavior of simply supported rectangular orthotropic plates under in-plane compression is investigated.Two types of in-plane boundary conditions are nowconsidered and the effects of initial imperfections are also studied.Numerical results arepresented for various cases of orthotropic composite plates having different elasticproperties.It is found that the results obtained are in good agreement with those ofexperiments.  相似文献   

2.
Geometrically nonlinear oscillations are investigated on sigmoid functionally graded material(S-FGM) plates with a longitudinal speed. The material properties of the plates obey a sigmoid distribution rule along the thickness direction. Based on the D'Alembert's principle, a nonlinear equation of motion is derived for the moving S-FGM plates, where the von Kármán nonlinear plate theory is adopted. Utilizing the Galerkin method, the equation of motion is discretized and solved via the method of harmonic balance. The approximate analytical solutions are validated through the adaptive step-size fourth-order Runge-Kutta method. Besides, the stability of the steady-state solutions is examined. The results reveal that the mode interaction behavior can happen between the first two modes of the moving S-FGM plates, leading to a complex nonlinear frequency response. It is further found that the power-law index, the longitudinal speed, the excitation amplitude, and the in-plane pretension force can significantly affect the nonlinear frequency-response characteristics of longitudinally traveling S-FGM plates.  相似文献   

3.
On the basis of von Kárman equations,the axisymmetric buckling and post-bucklingof annular plates on anelastic foundation is(?)tematically discussed byusing shootingmethods.  相似文献   

4.
In this paper,Von Kármán’s set of nonlinear equations for rectangular plates withlarge deflection is divided into several sets of linear equations by perturbation method,thedimensionless center deflection being taken as a perturbation parameter.These sets of linearequations are solved by the spline finite-point(SFP)method and by the spline finiteelement(SFE)method.The solutions for rectangular plates having any length-to-widthratios under a uniformly distributed load and with various boundary conditions arepresented,and the analytical formulas for displacements and deflections are given in thepaper.The computer programs are worked out by ourselves.Comparison of the results withthose in other papers indicates that the results of this paper are satisfactorily better.  相似文献   

5.
The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functionally graded(FG) layer and a graphene platelet(GPL) reinforced porous layer, respectively. Henceforth, the combined layers will be referred to as a two-dimensional(2D) FG/GPL plate. Two types of porosity and three graphene dispersion patterns, each of which is distributed through the plate thickness,are investigated. The mechanical properties of the closed-cell layers are used to define the variation of Poisson's ratio and the relationship between the porosity coefficients and the mass density. For the GPL reinforced layer, the effective Young's modulus is derived with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate the effective mass density and Poisson's ratio. The material of the upper 2D-FG layer is graded in two directions, and its effective mechanical properties are also derived with the rule of mixtures. The dynamic governing equations are derived with a first-order shear deformation theory(FSDT) and the von Kármán nonlinear theory. A combination of the dynamic relaxation(DR) and Newmark's direct integration methods is used to solve the governing equations in both time and space. A parametric study is carried out to explore the effects of the porosity coefficients, porosity and GPL distributions, material gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the plate response. It is shown that both the distributions of the porosity and graphene nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that the reduction in the dynamic deflection of the bilayer composite plates is maximized when the porosity and GPL distributions are symmetric.  相似文献   

6.
Nonlinear dynamic responses of a laminated hybrid composite plate subjected to time-dependent pulses are investigated. Dynamic equations of the plate are derived by the use of the virtual work principle. The geometric nonlinearity effects are taken into account with the von Kármán large deflection theory of thin plates. Approximate solutions for a clamped plate are assumed for the space domain. The single term approximation functions are selected by considering the nonlinear static deformation of plate obtained using the finite element method. The Galerkin Method is used to obtain the nonlinear differential equations in the time domain and a MATLAB software code is written to solve nonlinear coupled equations by using the Newmark Method. The results of approximate-numerical analysis are obtained and compared with the finite element results. Transient loading conditions considered include blast, sine, rectangular, and triangular pulses. A parametric study is conducted considering the effects of peak pressure, aspect ratio, fiber orientation and thicknesses.  相似文献   

7.
From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions. The convolution-type functionals for the bending of viscoelastic thin and thick plates with damage are presented, and the corresponding generalized variational principles are given. From these generalized principles, all the basic equations of the displacement and damage variables and initial and boundary conditions can be deduced. As an example, we compare the difference between the dynamical properties of plates with and without damage and consider the effect of damage on the dynamical properties of plates.  相似文献   

8.
Applying Lagrange–Germain’s theory of elastic thin plates and Hamiltonian formulation, the dynamics of cantilever plates and the problem of its vibration control are studied, and a general solution is finally given. Based on Hamiltonian and Lagrangian density function, we can obtain the flexural wave equation of the plate and the relationship between the transverse and the longitudinal eigenvalues.Based on eigenfunction expansion, dispersion equations of propagation mode of cantilever plates are deduced. By satisfying the boundary conditions of cantilever plates, the natural frequencies of the cantilever plate structure can be given.Then, analytic solution of the problem in plate structure is obtained. An hybrid wave/mode control approach, which is based on both independent modal space control and wave control methods, is described and adopted to analyze the active vibration control of cantilever plates. The low-order(controlled by modal control) and the high-order(controlled by wave control) frequency response of plates are both improved. The control spillover is avoided and the robustness of the system is also improved. Finally, simulation results are analyzed and discussed.  相似文献   

9.
Analytical studies on the vibration and sound radiation characteristics of an asymmetric laminated rectangular plate are carried out in this paper. Theoretical formulations, in which the effects of thermal environments are taken into account, are derived for the vibration and sound radiation based on both first-order shear deformation plate theory and Rayleigh integral. It is found that the natural frequencies, the resonant amplitudes of vibration response and the sound pressure level decrease with the temperature rising. The natural frequencies of asymmetric plates are smaller than those of symmetric plates and the velocity responses of asymmetric plates are larger than those of symmetric plates.  相似文献   

10.
In this paper,according to the simplified the-ory of[1].the bending of rectangular plates withtwo opposite edges simply supported and other two op-posite edges being arbitrary under the action of aconcentrated load is treated by means of propertiesof two-variable-function and the method of se-ries[2].The effect of transverse shearing forces onthe bending of plates is considered.When the thick-ness h of plates is small.and the term,whose ordersare more than order of h~2 are neglected.then theresults agree with the solutions corresponding to theproblem of thin plates[3].At the end,the solutionsof the bending problem of plates with arbitrary lineardistributed load are also obtained.  相似文献   

11.
本文研究了复合材料正交异性层合板在动集中力作用下的结构声强特性。应用MSC/-NASTRAN商业软件计算了复合材料正交异性层合板在动集中力作用下各单元的内力和速度,再应用MATLAB软件得出复合材料层合板的结构声强。算例表明,复合材料正交异性层合板的结构声强流线图与各向同性板存在明显不同的特性。复合材料正交异性层合板的结构声强流线图受边界条件、层合板叠层顺序和层数的影响。从结构声强向量图和流线图可获得关于能量传递路径、源位置和能量汇合点的许多信息。进一步,结构振动产生的噪声可根据上述信息加以控制。  相似文献   

12.
The dynamic response of fully clamped, monolithic and sandwich plates of equal areal mass has been measured by loading rectangular plates over a central patch with metal foam projectiles. All plates are made from AISI 304 stainless steel, and the sandwich topologies comprise two identical face-sheets and either Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the plates as a function of projectile momentum. At low levels of projectile momentum both types of sandwich plate deflect less than monolithic plates of equal areal mass. However, at higher levels of projectile momentum, the sandwich plates tear while the monolithic plates remain intact. Three-dimensional finite element (FE) calculations adequately predict the measured responses, prior to the onset of tearing. These calculations also reveal that the accumulated plastic strains in the front face of the sandwich plates exceed those in the monolithic plates. These high plastic strains lead to failure of the front face sheets of the sandwich plates at lower values of projectile momentum than for the equivalent monolithic plates.  相似文献   

13.
A theory of elasticity for the bending of transversely isotropic plates has been developed from the basic equations of elasticity in terms of displacements for transversely isotropic bodies, which takes into account the loads distributed over the surfaces of the plates. Based on this theory, a refined theory of plates which can satisfy three boundary conditions along each edge of the plates and a new theory of thick plates are established. The solution of the refined theory for simply supported polygonal plates has been obtained; and its numerical result is very close to the exact solution of the three-dimensional theory of elasticity. A systematic comparison with the former theories of thick plates shows that the present theory of thick plates is closest to the result of the theory of elasticity.  相似文献   

14.
采用有限元方法研究爆炸载荷下四边固支孔结构金属复合夹芯板的动力响应及吸能特性,给出了孔结构金属复合夹芯板的动力响应过程,得到夹芯板的变形模式,比较了孔结构金属复合夹芯板与非孔结构金属复合夹芯板的抗爆炸冲击性能,同时讨论了孔大小、间距、排布方式和面板质量分布等因素对孔结构金属复合夹芯板抗爆炸冲击性能的影响。研究结果表明,迎爆面外面板的孔设计使爆炸冲击波穿过孔洞直接作用在芯材上,增强了芯材的压缩,从而提高了夹芯板的能量吸收能力。同等面密度情况下,内外面板厚度比大于1的孔结构金属复合夹芯板变形挠度小于内外面板厚度比小于1的孔结构金属复合夹芯板。进一步研究发现,通过合理设计内外面板的质量分布,可以使孔结构金属复合夹芯板的抗爆炸冲击性能最优。  相似文献   

15.
用花岗岩和混凝土制备出了花岗岩板、钢丝网混凝土板、花岗岩与钢丝网混凝土组合板、花岗岩块石砌体钢筋混凝土结构板4种类型的有限厚靶板。采用口径为30 mm的火炮作为发射装置,利用形状相同、材料强度不同的2种弹体对上述靶板进行了侵彻贯穿实验,比较了各类靶板抗侵彻贯穿破坏现象。结果表明,设计良好的块石砌体钢筋混凝土结构板具有优良的抗贯穿性能,且其抗贯穿性能与块石粒径、块石强度、块石砌筑方式、粘结强度和钢筋混凝土结构形式密切相关。  相似文献   

16.
Summary This study presents exact relationships between the deflections of isotropic sandwich plates and their corresponding Kirchhoff plates. The governing equilibrium equations for the sandwich plates are derived on the basis of the Reissner-Mindlin shear deformation plate theory. The considered plates are either (i) simply supported, of general polygonal shape and under any transverse loading condition or (ii) simply supported and clamped circular plates under axisymmetric loading. As the relationships are exact under the assumptions used in the plate theories, one may obtain exact deflection solutions of sandwich plates if the Kirchhoff plate solutions are exact. The relationships should also be useful for the development of approximate formulas for plates with other shapes, boundary and loading conditions, and may serve to check numerical deflection values computed from sandwich plate analysis software.  相似文献   

17.
The dynamic responses of clamped circular monolithic and sandwich plates of equal areal mass have been measured by loading the plates at mid-span with metal foam projectiles. The sandwich plates comprise AISI 304 stainless steel face sheets and aluminium alloy metal foam cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the plates as a function of projectile momentum. It is found that the sandwich plates have a higher shock resistance than monolithic plates of equal mass. Further, the shock resistance of the sandwich plates increases with increasing thickness of sandwich core. Finite element simulations of these experiments are in good agreement with the experimental measurements and demonstrate that the strain rate sensitivity of AISI 304 stainless steel plays a significant role in increasing the shock resistance of the monolithic and sandwich plates. Finally, the finite element simulations were employed to determine the pressure versus time history exerted by the foam projectiles on the plates. It was found that the pressure transient was reasonably independent of the dynamic impedance of the plate, suggesting that the metal foam projectile is a convenient experimental tool for ranking the shock resistance of competing structures.  相似文献   

18.
The dynamic response of clamped circular monolithic and sandwich plates of equal areal mass and thickness has been measured by loading the plates at mid-span with metal foam projectiles. The sandwich plates comprise AISI 304 stainless steel face sheets and either AL-6XN stainless steel pyramidal core or AISI 304 stainless steel square-honeycomb lattice core. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the plates as a function of projectile momentum. It is found that the sandwich plates have a higher shock resistance than monolithic plates of equal mass, and the square-honeycomb sandwich plates outperform the pyramidal core plates. Three-dimensional finite element simulations of the experiments are in good agreement with the experimental measurements. The finite element calculations indicate that the ratio of loading time to structural response time is approximately 0.5. Consequently, the tests do not lie in the impulsive regime, and projectile momentum alone is insufficient to quantify the level of loading.  相似文献   

19.
A global higher-order shear deformation theory is devised to obtain the governing equations of composite plates under dynamic excitation. The time-harmonic solution leads to an eigenvalue problem for the natural frequencies of plates. The eigenvalue problem for rectangular plates is converted to a set of homogenous algebraic equations using differential quadrature method. The formulation of the problem allows direct application of various boundary conditions. Therefore, rectangular plates with mixed boundary conditions are also considered. To show the validity of results, the fundamental natural frequencies of composite plates with different boundary conditions and those of isotropic plates with mixed boundary conditions are compared against the results available in the literature.  相似文献   

20.
In the view of Reissner’s and Kirchhoff’s theories,respectively,we formulate theisotropicalized governing equations for the anisotropic plates,and give the proof of theequivalence relation between these two plate-models for the simply-supported rectangularorthotropic plates.The well-known fundamental solutions of the isotropic plates are utlizedfor the spline integral equation analysis of anisotropic plates.Even with sparse meshes thesatisfactory results can be obtained.The analysis of plates on two-parameter elasticfoundation is so simple as the common case that only a few terms should be added to theformulas of fictitious loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号