首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper and the companion one [Cafagna, D., and Grassi, G., Nonlinear Dynamics, this issue] describe the new phenomenon of chaotic beats in a modified version of the Chua's circuit, driven by two sinusoidal inputs with slightly different frequencies. In particular, this paper presents the circuit design, including a novel implementation of the Chua diode, and investigates the beats phenomenon generated by the considered circuit.  相似文献   

2.
In this paper, a certain kind of intermittent scheme is used to control the chaos in a single chaotic Chua circuit to reach an arbitrary orbit. Furthermore, it is confirmed to be effective in suppressing spatiotemporal chaos and a spiral wave in the networks of Chua circuits with nearest-neighbor connections. The controllable and measurable variable is sampled, and the linear error between the sampled variable and the selected thresholds is fed back into the system only if the sampled variable exceeds the thresholds; otherwise, the system will develop itself without any external perturbation. In experiments, the control scheme could be realized by using the Heavside function. In the case of one single chaotic Chua circuit, the chaotic state can be controlled to reach an arbitrary n-periodical orbit (n=1,2,3,5,6,…) with appropriate feedback intensity and thresholds. It is argued that this scheme could explain the mechanism of what is called phase compression. Then the phase compression scheme is used to control a spiral wave and spatiotemporal chaos in a network of Chua circuits with 256×256 sites. The numerical simulation results confirm its effectiveness when appropriate upper and bottom thresholds are used by monitoring the measurable output voltages of the chaotic circuit in one site of the network.  相似文献   

3.
In this paper, a hyperchaotic memristive circuit based on Wien-bridge chaotic circuit was designed. The mathematical model of the new circuit is established by using the method of normalized parameter. The equilibrium point and the stability point of the system are calculated. Meanwhile, the stable interval of corresponding parameter is determined. Using the conventional dynamic analysis method, the dynamical characteristics of the system are analyzed. During the analysis, some special phenomenon such as coexisting attractor is observed. Finally, the circuit simulation of system is designed and the practical circuit is realized. The results of theoretical analysis and numerical simulation show that the Wien-bridge hyperchaotic memristive circuit has very rich and complicated dynamical characteristics. It provides a theoretical guidance and a data support for the practical application of memristive chaotic system.  相似文献   

4.
In this work, a novel inductor-free fourth-order two-memristor-based chaotic circuit is proposed. This new circuit is developed from a current feedback op amp-based sinusoidal oscillator through replacing a linear resistor with a memristor and adding another different parallel memristor to the cascaded memristor–capacitor net. The proposed circuit can perform chaotic, fixed point, and period behaviors. The most striking feature is that this system has three line equilibria and exhibits the extreme multistability phenomenon of the coexisting infinitely many attractors. Specially, amplitude death behavior and transient transition behavior can also be found in the proposed system. By using standard nonlinear analysis tools including system dissipation, equilibrium point stability, phase portrait, Lyapunov exponent spectrum, and bifurcation diagram, the fundamental dynamical characteristics of the circuit are investigated in detail. Moreover, a MULTISIM circuit is designed to verify the numerical simulations.  相似文献   

5.
In this paper, we construct a novel four dimensional fractional-order chaotic system. Compared with all the proposed chaotic systems until now, the biggest difference and most attractive place is that there exists no equilibrium point in this system. Those rigorous approaches, i.e., Melnikov??s and Shilnikov??s methods, fail to mathematically prove the existence of chaos in this kind of system under some parameters. To reconcile this awkward situation, we resort to circuit simulation experiment to accomplish this task. Before this, we use improved version of the Adams?CBashforth?CMoulton numerical algorithm to calculate this fractional-order chaotic system and show that the proposed fractional-order system with the order as low as 3.28 exhibits a chaotic attractor. Then an electronic circuit is designed for order q=0.9, from which we can observe that chaotic attractor does exist in this fractional-order system. Furthermore, based on the final value theorem of the Laplace transformation, synchronization of two novel fractional-order chaotic systems with the help of one-way coupling method is realized for order q=0.9. An electronic circuit is designed for hardware implementation to synchronize two novel fractional-order chaotic systems for the same order. The results for numerical simulations and circuit experiments are in very good agreement with each other, thus proving that chaos exists indeed in the proposed fractional-order system and the one-way coupling synchronization method is very effective to this system.  相似文献   

6.
Zhao  Xinxin  Zang  Hongyan  Wei  Xinyuan 《Nonlinear dynamics》2022,110(1):821-839

Chaotic maps with good chaotic performance have been extensively designed in cryptography recently. This paper gives an nth-order polynomial chaotic map by using topological conjugation with piecewise linear chaos map. The range of chaotic parameters of this nth-order polynomial chaotic map is large and continuous. And the larger n is, the greater the Lyapunov exponent is and the more complex the dynamic characteristic of the nth-order polynomial chaotic map. The above characteristics of the nth-order polynomial chaotic map avoid the disadvantages of one-dimensional chaotic systems in secure application to some extent. Furthermore, the nth-order polynomial chaotic map is proved to be an extension of the Chebyshev polynomial map, which enriches chaotic map. The numerical simulation of dynamic behaviors for an 8th-order polynomial map satisfying the chaotic condition is carried out, and the numerical simulation results show the correctness of the related conclusion. This paper proposed the pseudorandom number generator according to the 8th-order polynomial chaotic map constructed in this paper. Using the performance analysis of the proposed pseudorandom number generator, the analysis result shows that the pseudorandom number generator according to the 8th-order polynomial chaotic map can efficiently generate pseudorandom sequences with higher performance through the randomness analysis with NIST SP800-22 and TestU01, security analysis and efficiency analysis. Compared with the other pseudorandom number generators based on chaotic systems in recent references, this paper performs a comprehensive performance analysis of the pseudorandom number generator according to the 8th-order polynomial chaotic map, which indicates the potential of its application in cryptography.

  相似文献   

7.
This paper presents an optimal nonlinear observer for synchronizing the transmitter-receiver pair with guaranteed optimal performance. In the proposed scheme, a generalized nonlinear state-space observer via uniform matrix transformations is constructed to estimate the transmitter state and the information signal, simultaneously. A nonlinear optimal design approach is used to synchronize chaotic systems. Solving the Hamilton–Jacobi–Bellman (H–J–B) equations we can obtain a linear optimal feedback scheme for piecewise-linear chaotic systems. Moreover, a robust scheme derived from the H optimization theory improves the synchronization performance of general nonlinear chaotic systems by suppressing the influence of their high order residual terms. Finally, two numerical simulation examples are illustrated by the chaotic Chua’s circuit system and the Lorenz chaotic system to demonstrate the effectiveness of our scheme.  相似文献   

8.
Xu  Quan  Chen  Xiongjian  Chen  Bei  Wu  Huagan  Li  Ze  Bao  Han 《Nonlinear dynamics》2023,111(9):8737-8749

The cubic-polynomial nonlinearity with N-shaped curve plays a crucial role in generating abundant electrical activities for the original FitzHugh-Nagumo (FHN) neuron model. The pioneer FHN neuron model is efficient in theoretical analysis and numerical simulation for these abundant electrical activities, but analog multipliers are indispensable in hardware implementation since the involvement of cubic-polynomial nonlinearity. Analog multiplier goes against the circuit integration of FHN neuron model due to its huge implementation costs. To avoid the involvement of analog multiplier in hardware implementation, a nonlinear function possessing N-shaped curve and multiplier-free implementation is presented in this paper. To confirm the availability of this nonlinear function in generating electrical activities, numerical simulations and hardware experiments are successfully executed on an improved two-dimensional (2D) FHN neuron model with externally applied stimulus. The results demonstrate that the improved FHN neuron model can generate rich electrical activities of periodic spiking behavior, chaotic behavior, and quasi-periodic behavior. Analog circuit implementation without any multiplier and its hardware experiment show the availability of the proposed nonlinear function, which is appropriate for analog circuit implementation of FHN neuron-based neuromorphic intelligence.

  相似文献   

9.
The paper first analyzes a newly reported three-dimensional four-wing chaotic attractor, and observes all kinds of attractors, including periodic and chaotic, by numerical simulation. Then, the chaotic characteristic of the system is proved by investigating the existence of a topological horseshoe in it, based on the topological horseshoe theory. At last, an electronic circuit is designed to implement the chaotic system. The results of circuit experiment coincided well with those of numerical simulation.  相似文献   

10.
Conservative chaotic systems are rare, especially autonomous smooth dynamical systems. This paper reports two four-dimensional (4D) autonomous conservative systems. The conservation of these two systems has been verified using the trace of Jacobian matrix, perpetual point theory and Hamiltonian energy theory. Numerical analyses, including phase portrait, Poincaré section, Lyapunov exponent spectrum and bifurcation diagram, verify the existence of the chaotic and quasiperiodic flows. Moreover, a electronic circuit in Multisim is built to demonstrate their chaotic dynamics, whose circuit experimental results agree well with the numerical results.  相似文献   

11.
Two simple autonomous chaotic electronic circuits have been proposed in this paper. The core of each of the circuits consists of a single amplifier biquad (SAB). We have proposed two configurations of converting this SAB into chaotic oscillators using suitable passive nonlinear element and a storage element in the form of an inductor. The mathematical models of the proposed chaotic circuits have been constructed, which are fourth order autonomous nonlinear differential equations. The behavior of the proposed circuits has been investigated through numerical simulations, Spice-based circuit simulations and electronic hardware experiments and they agree well with each other. It has been found that both the circuits show complex behaviors like bifurcations and chaos for a certain range of circuit parameters.  相似文献   

12.
This paper presents a simple chaotic circuit consisting of two capacitors, one linear two-port VCCS and one time-state-controlled impulsive switch. The impulsive switch causes rich chaotic and periodic behavior. The circuit dynamics can be simplified into a one-dimensional return map that is piecewise linear and piecewise monotone. Using the return map, we clarify parameter conditions for existence of chaotic and periodic attractors and coexistence state of attractors.  相似文献   

13.
In this paper, a memristor with a fourth degree polynomial memristance function is used in the simplest chaotic circuit which has only three circuit elements: a linear passive inductor, a linear passive capacitor, and a nonlinear active memristor. We use second order exponent internal state memristor function and fourth degree polynomial memristance function to increase complexity of the chaos. So, the system can generate double-scroll attractor and four-scroll attractor. Systematic studies of chaotic behavior in the integer-order and fractional-order systems are performed using phase portraits, bifurcation diagrams, Lyapunov exponents, and stability analysis. Simulation results show that both integer-order and fractional-order systems exhibit chaotic behavior over a range of control parameters.  相似文献   

14.
Vibrations of a parametrically and self-excited system with two degrees of freedom have been analysed in this paper. The system is constituted by two parametrically coupled oscillators characterised by self-excitation and nonlinear Duffing’s type nonlinearities. Synchronisation phenomenon has been determined near the principal resonances in the neighbourhood of the first p1 and the second p2 natural frequencies, and near the combination resonance (p1+p2)/2. Vibrations have been investigated for parameters which satisfy the internal resonance condition p2/p1=3. The existence and break down of the synchronisation phenomenon have been revealed analytically by the multiple time scale method, whilst transition of the system to chaotic motion has been carried out numerically.  相似文献   

15.
A novel memristive chaotic circuit is proposed by replacing the Chua’s diode in modified Chua’s circuit with a smooth active memristor, and the corresponding memristive model is analyzed and validated. The equilibrium point set, dissipativity and stability of this new chaotic circuit are developed theoretically. The dynamic characteristics for the new system are presented by means of phase diagrams, Lyapunov exponents, bifurcation diagrams and Poincaré maps. The coexistence of the memristive system is carried out from the perspective of asymmetric coexistence and symmetry coexistence. In addition, the coexistence of multiple states is studied by a more direct method with initial value as the system variable to gain a more intuitive observation. The circuit model of the memristive chaotic system is designed through Multisim simulation software. Finally, the memristive chaotic sequence is used to encrypt the image, and the influence of multistability on the encryption is investigated by the histogram, correlation and key sensitivity. The results show that the proposed new memristive chaotic system has high security.  相似文献   

16.
This paper deals with a class of three-dimensional autonomous nonlinear systems which have potential applications in secure communications, and investigates the localization problem of compact invariant sets of a class of Lorenz-like chaotic systems which contain T system with the help of iterative theorem and Lyapunov function theorem. Since the Lorenz-like chaotic system does not have y in the second equation, the approach used to the Lorenz system cannot be applied to the Lorenz-like chaotic system. We overcome this difficulty by introducing a cross term and get an interesting result, which includes the most interesting case of the chaotic attractor of the Lorenz-like systems. Furthermore, the results obtained in this paper are applied to study complete chaos synchronization. Finally, numerical simulations show the effectiveness of the proposed scheme.  相似文献   

17.
由于广义蔡氏电路存在2个对称的稳定平衡点,周期激励可能导致系统出现相应于不同初值的2种共存的分岔模式. 概周期解由环面破裂进入混沌,混沌吸引子从相位不同步逐渐演化为同步,并进一步随着参数的变化,产生分裂现象. 分裂后的2个相互对称的混沌吸引子仍存在相位同步效应,这2个混沌吸引子再次相互作用后形成扩大了的混沌吸引子,并交替围绕2个子混沌结构来回振荡. 同时,在混沌过程中,其轨迹在相当长的一段时间内严格按照概周期行为振荡,即混沌结构中存在局部概周期行为,这种局部概周期行为随参数的变化会逐步减弱,直至消失.   相似文献   

18.
A practical synchronization approach is proposed for a class of fractional-order chaotic systems to realize perfect \(\delta \)-synchronization, and the nonlinear functions in the fractional-order chaotic systems are all polynomials. The \(\delta \)-synchronization scheme in this paper means that the origin in synchronization error system is stable. The reliability of \(\delta \)-synchronization has been confirmed on a class of fractional-order chaotic systems with detailed theoretical proof and discussion. Furthermore, the \(\delta \)-synchronization scheme for the fractional-order Lorenz chaotic system and the fractional-order Chua circuit is presented to demonstrate the effectiveness of the proposed method.  相似文献   

19.
Kerr oscillators are model systems which have practical applications in nonlinear optics. Optical Kerr effect, i.e., interaction of optical waves with nonlinear medium with polarizability χ (3) is the basic phenomenon needed to explain, for example, the process of light transmission in fibers and optical couplers. In this paper, we analyze the two Kerr oscillators coupler and we show that there is a possibility to control the dynamics of this system, especially by switching its dynamics from periodic to chaotic motion and vice versa. Moreover, the switching between two different stable periodic states is investigated. The stability of the system is described by the so-called maps of Lyapunov exponents in parametric spaces. Comparison of basins of attractions between two Kerr couplers and a single Kerr system is also presented.  相似文献   

20.
Ye  Xiaolin  Wang  Xingyuan  Gao  Suo  Mou  Jun  Wang  Zhisen  Yang  Feifei 《Nonlinear dynamics》2020,99(2):1489-1506
Nonlinear Dynamics - In this paper, a new seventh-order mixed memristive chaotic circuit was designed, and the new mathematical model of the system was established. The origin as the only...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号