首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 378 毫秒
1.
超高分子量聚乙烯(UHMWPE)轴承材料在低速重载工况下常发生严重磨损,通过添加改性填料能够显著提升其摩擦学性能. 凹凸棒土(ATP)作为一种改性填料能够增强基体材料的机械性能进而改善其摩擦特性,但是ATP作为填料往往会因为团聚效应而降低材料的补强效果. 通过对ATP进行表面改性处理可克服团聚效应,实现ATP与基体间的均匀共混. 通过表面化学包覆改性法制备由硅烷偶联剂KH570改性处理的ATP与UHMWPE共混制成复合材料,并与纯UHMWPE材料作对照试验. 利用RTEC摩擦试验机研究复合材料在水润滑条件下摩擦系数随载荷和转速的变化,以及材料填充含量对复合材料在低速重载(v=0.55 m/s、Fz=55 N)工况下磨损性能的影响. 利用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)与电子万能材料试验机分别对ATP改性效果、熔融结晶行为及复合材料的重要力学性能进行表征测试. 试验结束后,利用表面轮廓仪与激光共聚焦显微镜观察复合材料表面形貌并分析其磨损机理. 结果表明:硅烷偶联剂KH570对ATP的改性效果良好,填充改性ATP能提高材料的邵氏硬度,且材料的拉伸性能随填充含量的提高呈下降趋势;对比纯UHMWP材料,复合材料的摩擦系数更低,适量的ATP填充能改善材料磨损性能,减小体积磨损率;试验中改性ATP质量分数为1%的复合材料其摩擦学性能最优,在低速重载时的摩擦系数及体积磨损率与纯UHMWPE相比分别降低了52.45%和37.58%.   相似文献   

2.
仿生微胶囊复合水润滑轴承材料的摩擦性能研究   总被引:1,自引:0,他引:1  
水润滑尾轴承在低速重载的工况下常出现严重磨损的情况.为降低润滑不良造成的尾轴承磨损,本文中通过观察铁犁木表面结构,分析其自润滑机理,设计出仿生微胶囊复合水润滑轴承材料.复合材料以高密度聚乙烯为基底材料,含基础油的仿生微胶囊为添加剂,采用共混的方式加工成型.使用CBZ-1船舶轴系摩擦磨损试验机研究了仿生微胶囊复合材料在不同试验工况下的摩擦性能.通过分析复合材料的磨损量和表面形貌参数,得出复合材料的磨损机理.结果表明:试验工况条件下,仿生微胶囊复合材料能够提升材料的摩擦学性能,其中当仿生微胶囊质量分数为3%时提升效果最明显.该研究为仿生水润滑材料的结构设计以及性能提升等提供试验依据.  相似文献   

3.
将所合成的乙二胺缩水杨醛Schiff碱铜(Ⅱ)络合物和甘油-聚乙烯微胶囊与超高分子量聚乙烯(UHMWPE)共混制备出改性UHMWPE材料,利用销-盘式摩擦磨损试验机评价Schiff碱铜(Ⅱ)络合物和甘油.聚乙烯微胶囊改性UHMWPE/GCr15钢配副在高速干摩擦条件下的摩擦磨损性能,利用扫描电子显微镜观察其磨损表面形貌,采用电子能谱仪分析磨损表面的主要元素组成并探讨其磨损机理.结果表明,由于其独特的自身选择性转移效应使得耐磨性提高,在高速干摩擦条件下没有严重的粘着磨损.  相似文献   

4.
采用填充聚合法制备了相变颗粒改性聚酰胺复合材料.在摩擦速率为6~24 m/s条件下的测试结果表明:相比纯聚酰胺,所得聚酰胺复合材料具有明显更低的摩擦系数和磨损率,并且对摩擦速率呈现一定的自适应性.当复合材料中相变颗粒含量较少时(质量分数5%),复合材料对摩擦速率的自适应能力较弱,而当复合材料中相变颗粒含量较多时(质量分数10%),复合材料的自适应能力较强.纯聚酰胺的磨损模式为严重的黏着磨损;5%相变颗粒改性聚酰胺复合材料呈现典型的磨粒磨损和轻微的黏着磨损,而10%相变颗粒改性聚酰胺复合材料以轻微的磨粒磨损和轻微的疲劳磨损共存.  相似文献   

5.
PTFE及UHMWPE改性PA6复合材料的摩擦学性能研究   总被引:1,自引:1,他引:0  
采用熔融共混法制备了聚四氟乙烯(PTFE)和超高分子量聚乙烯(UHMWPE)改性的两种聚酰胺6(PA6)复合材料,研究了改性PA6复合材料的摩擦学性能,通过扫描电子显微镜观察复合材料的磨损表面,并对其磨损机理进行了分析.结果表明:使用单一润滑剂改性,添加量相同时,PTFE比UHMWPE改性的PA6复合材料具有更优的摩擦学性能;使用复合润滑剂改性时,PA6复合材料获得了比使用单一润滑剂改性时更好的摩擦学性能;添加不同种类的固体润滑剂,PA6复合材料的磨损表面呈现不同的形态特征,表现出不同的磨损机理.  相似文献   

6.
采用UMT-3MT往复式滑动摩擦磨损试验机,研究在透明质酸钠(SHA)润滑介质下,氧化石墨烯(GO)对基体材料超高分子量聚乙烯(UHMWPE)摩擦学性能的影响.利用高分辨扫描电子显微镜(HR-SEM)和MicroXAM非接触式3D表面轮廓仪观察试样表面磨痕形貌并计算其磨损率.结果表明:在SHA润滑介质下,无机填料GO的添加显著降低UHMWPE基复合材料的磨损率,但是,GO的添加对复合材料稳态摩擦系数和残留在SHA润滑介质中的磨粒特征无明显影响.无机填料GO的添加增强了UHMWPE在SHA润滑介质下的耐磨性能.  相似文献   

7.
采用往复式滑动摩擦磨损试验机,考察了在胎牛血清蛋白(BSA)润滑环境下,氧化石墨烯/超高分子量聚乙烯(GO/UHMWPE)复合材料的摩擦学性能.试验结束后,利用高分辨扫描电子显微镜(HR-SEM)和Micro-XAM非接触式三维表面轮廓仪观察试样表面磨痕并计算相应的磨损率.结果表明:在BSA润滑环境下,相对纯UHMWPE,尽管无机增强填料GO的添加可以显著降低复合材料的稳态摩擦系数(COF),但是随GO含量增加无明显变化.然而,复合材料的体积磨损率(WR)却随GO含量增加呈现出逐渐减小的趋势.因此无机填料GO可以显著改善UHMWPE在BSA润滑环境下的摩擦学性能.  相似文献   

8.
采用微摩擦试验机,在干摩擦和植物油润滑条件下分别考察了法向载荷、滑动速度和试验持续时间对含质量分数5%、10%及15%乙二胺缩水杨醛西佛碱(Schiff碱)铜(Ⅱ)配合物的改性超高分子量聚乙烯(UHMWPE)与铬钢(100Cr6)配副在50~1 600μm/s滑动速度范围的摩擦系数的影响,并与纯UHMWPE进行了对比.结果表明:在低速滑动条件下,含质量分数5%~15%乙二胺缩水杨醛Schiff碱铜(Ⅱ)配合物的改性UHMWPE在植物油润滑或干摩擦时的摩擦系数与法向载荷无关,摩擦系数明显小于纯UHMWPE,尤其是在干摩擦时的摩擦系数均较纯UHMWPE降低29%;当改性UHMWPE中乙二胺缩水杨醛Schiff碱铜(Ⅱ)配合物含量足够大(如15%)时,可减小植物油润滑时的滑动速度对摩擦系数的影响;而含5%~15%乙二胺缩水杨醛Schiff碱铜(Ⅱ)配合物的改性UHMWPE在干摩擦时的摩擦系数基本与滑动速度、试验持续时间无关.乙二胺缩水杨醛Schiff碱铜(Ⅱ)配合物改性的UHMWPE在干摩擦条件下稳定的低速滑动摩擦特性,符合纳米定位对摩擦副材料所期望的性能.  相似文献   

9.
采用模压法制备了聚丙烯(PP)和MoS2填充超高分子量聚乙烯(UHMWPE)复合材料;在MM-200型摩擦磨损试验机上考察了UHMWPE/PP/MoS2复合材料的摩擦磨损性能;采用扫描电子显微镜观察分析复合材料磨损表面形貌.结果表明:单独添加MoS2可以提高UHMWPE的抗磨性能,但摩擦系数增大、力学性能降低;而采用PP和MoS2对UHMWPE进行改性可以显著改善加工性能;72.7%UHMWPE/18.2%PP/9.1%MoS2三元复合材料的加工性能、承载能力和长时抗磨性能明显优于UHMWPE;UHMWPE主要发生粘着磨损和疲劳磨损;而72.7%UHMW-PE/18.2%PP/9.1%MoS2三元复合材料在相同试验条件下同钢对摩时仅发生轻微塑性变形.  相似文献   

10.
将改性玄武岩颗粒和氟化石墨构成的二元复合填料引入PTFE/Nomex混纺织物,制备了适用于高速工况的织物复合材料. 机械性能方面,二元填料的引入同时增加了复合材料的拉伸强度和断裂伸长率. 热学性能研究则证实,二元填料提高了复合材料的热稳定性能. 对摩擦对偶的扫描电镜(SEM)观察说明,改性玄武岩颗粒既能单独应用快速在摩擦对偶表面形成转移膜,又能与氟化石墨复配起到研磨作用,协助氟化石墨的部分原位剥离,极大增强复合材料的抗磨性能. 在高速摩擦磨损试验中,当载荷为10 MPa,线速度为0.98 m/s时,仅添加改性玄武岩颗粒的复合材料磨损率较未改性复合材料降低了32%. 当载荷为50 MPa,线速度为1.18 m/s时,二元填料改性的复合材料磨损率较未改性复合材料降低了53%.   相似文献   

11.
龚国芳  王新 《摩擦学学报》2000,20(5):321-325
在MM-200型磨损试验机上分别对以釜内聚合和熔融机械混合方法制备的高岭土填充超高分子量聚乙烯基复合材料(UHMWPE/Kaolin)在干摩擦条件下与45^#钢对摩时的摩擦磨损性能进行了研究,并用扫描电子显微镜和立体光学显微镜对其磨损表面进行了观察与分析,对材料的磨损机理进行了探讨。结果表明:引入适量的高岭土能明显降低UHMWPE的摩擦系数和磨损率,用釜内聚合方法制备的UHMWPE/Kaolin复  相似文献   

12.
以钛酸四丁酯为前驱体,凹凸棒石(ATP)为载体,分别采用溶胶凝胶法和蒸汽法制备了两种不同形貌的凹凸棒石-二氧化钛(ATP-TiO2)杂化材料,并以质量分数为5%的含量填充超高分子量聚乙烯(UHMWPE). 通过对比相同微动摩擦条件下超高分子量聚乙烯、凹凸棒石及凹凸棒石-二氧化钛杂化填料填充超高分子量聚乙烯复合材料的摩擦学性能,探究了凹凸棒石-二氧化钛杂化材料微观形貌影响复合材料微动磨损性能的机理. 结果表明:杂化材料的耐热性能较凹凸棒石有显著提升;蒸汽法制备ATP-TiO2杂化材料的比表面积更大,在基体中分散更均匀,与基体的界面结合性更好,在摩擦过程中能够有效地承载,并促进转移膜的生成,其改性的复合材料表现出最低的摩擦系数和磨损率.   相似文献   

13.
超高分子聚乙烯材料因具有优良的耐磨性、耐蚀性和轻质性而逐渐应用在船舶甲板表面. 船舶甲板的湿滑、海浪冲击和颠簸环境严重影响甲板仪器设备和人员的平衡性,进而挑战其可靠性和船员人身安全. 为了提升超高分子聚乙烯(UHMWPE)材料在湿滑环境下表面防滑性能,采用具有高硬度和优异増摩性能的纳米二氧化硅(SiO2)对其进行共混改性,探究不同体积分数的SiO2在摩擦磨损试验过程中对UHMWPE摩擦系数的影响规律. 试验结果表明:一方面,纳米SiO2在一定程度上削弱了水膜在纳米SiO2改性UHMWPE复合材料的浸润能力和吸附性,使其从亲水性逐步向疏水性转变,改善湿滑环境下的防滑效果;另一方面,纳米SiO2颗粒坚硬且不易变形的特性让其逐渐在摩擦磨损过程中显露出来,在外界载荷的作用下与陶瓷球之间形成啮合摩擦现象,导致UHMWPE的摩擦系数呈现上升趋势,最终表现出与干摩擦相近的摩擦系数,达到防滑需求. 研究结果对设计和制造一种能在湿滑环境下具有优异防滑性能的船舶甲板高分子复合材料提供理论支持.   相似文献   

14.
采用热压成型工艺制备了纳米ZnO填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响;采用扫描电子显微镜观察复合材料磨损表面形貌.结果表明:填充15%~20%的纳米ZnO可以显著改善UHMWPE的摩擦磨损性能;复合材料的磨损机理随纳米粒子含量的增加而变化,纯UHMWPE的磨损机理主要为粘着磨损和疲劳磨损,随着复合材料中纳米粒子含量增加,疲劳磨损特征逐渐消失,当其纳米粒子含量大于15%时,其磨损机理主要为粘着磨损;复合材料磨损表面出现了贫ZnO区和富ZnO区,且富ZnO区以"岛"的形式分布在贫ZnO区中.  相似文献   

15.
为分析车辆传动装置密封环在高速高压工作环境下的磨损失效,利用自主研制的试验台研究了速度、接触压力和介质油温对密封摩擦副摩擦磨损特性的影响;利用扫描电子显微镜观察了磨损程度不同的密封环端面的表面形貌,并探讨了其磨损机理.结果表明,在设定的试验条件下,密封摩擦副的摩擦系数随着压力的增大和转速的升高先急剧减小再降幅减缓后趋于稳定,而压力对摩擦状态的影响要比转速显著.密封环端面温度与摩擦状态之间存在相互影响的特征.密封介质性质同样影响着密封环的摩擦状态.在稳定磨损阶段,密封环的磨损机理以磨粒和黏着磨损为主导,当进入到剧烈磨损期后,磨粒磨损和疲劳磨损的影响更为突出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号