首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
柔性扑翼的气动特性研究   总被引:6,自引:0,他引:6  
以往扑翼的气动力计算研究都很少考虑扑翼的柔性,而在鸟的扑翼动作中,在外加气动力和鸟自身的扑动力作用下,扑翼的柔性变形相当大。本文在原有匀速刚性模型的基础上,提出考虑了扑翼扑动速率变化和形状变化的扑翼分析模型,使之更接近鸟翼柔性扑动真实情况。通过计算分析气动特性发现,控制适当的话,柔性变形能大大改善扑翼的气动性能。本文通过模拟鸟扑翼的柔性运动,计算了时柔性扑翼气动力以及平均升力系数和平均推力系数随着扑动角、倾斜角等参数变化的情况,从而从气动的角度解释了为什么鸟在不同的飞行阶段扑翼规律各不相同,并为柔性扑翼飞行器的设计提供了理论依据。  相似文献   

2.
通过在动态网格上求解Navier-Stokes方程,对前后双扑翼的非定常粘性流场进行了数值模拟和气动干扰分析,考察了前后翼不同水平距离和不同相位差对其气动力和气动效率的影响。结果表明,扑动前翼和静止后翼间的气动干扰在各种不同水平距离下都有利于气动特性的改善,但气动干扰的作用随着前后翼水平距离的增大而减弱;前后双翼扑动的相位差是影响气动性能的重要参数,两翼间的气动干扰是否有利则与相位差和水平距离有直接联系。  相似文献   

3.
膜扑翼飞行器的变形研究   总被引:1,自引:0,他引:1       下载免费PDF全文
最近昆虫翼的变形成了研究热点,而扑翼飞行器的变形力学研究却几乎无人问津.然而,无论昆虫、鸟类还是扑翼飞行器在飞行时,翼的变形都是存在的,要精确计算翼扑动产生的气动力,必须考虑其变形.本文比较了导致变形产生的膜扑翼飞行器的惯性力和气动力在一个周期中的变化情况,发现它们的峰值比值为2左右,然后提出了在随体坐标系中的固支边界条件,采用有限元法计算了惯性力和气动力分别对变形的影响,发现扑翼飞行器的气动力对变形的影响是不可忽略的重要因素,而惯性力与气动力的合力引起的最大正变形发生在下扑初始阶段,最大负变形发生在上扑初始阶段.本文为扑翼飞行器的设计提供了力学分析基础.  相似文献   

4.
仿生扑翼飞行机器人翅型的研制与实验研究   总被引:6,自引:0,他引:6  
模仿昆虫和小鸟飞行的扑翼飞行机器人将举升、悬停和推进功能集于一个扑翼系统,与固定翼和旋翼完全不同,因此研究只能从生物仿生开始。生物飞行的极端复杂性使得进行完整和精确的扑翼飞行分析非常复杂,因此本文在仿生学进展基础上,通过一些合适的假设和简化,建立了仿生翅运动学和空气动力学模型,并以此为基础研制了多种翅型。研制了气动力测量实验平台,对各种翅型进行了实验研究。实验结果表明,研制的翅型都能产生一定的升力,其中柔性翅具有较好的运动性能和气动性能,并且拍动频率和拍动幅度对升力有较大影响。  相似文献   

5.
张钰  吕鹏  张俭  陈志敏 《实验力学》2012,27(3):281-287
扑动而形成非定常气动现象是扑翼飞行过程中产生高升力的主要原因。本文以Ellington实验的鹰蛾翅膀为原形,设计扑翼实验及数值计算模型。通过压差传感器对翅膀模型上翼面固定位置进行测压,分析前缘涡的产生及脱落情况(考虑动压效应)。测量上下翼面固定位置处的压差,揭示扑翼飞行中产生高升力的主要原因。利用烟风洞观察扑翼模型周围流场结构及特殊涡产生变化情况。另外,根据Ellington提供的升力关系式估算了扑翼模型在一个周期内的平均升力。最后,基于三维欧拉方程对扑翼飞行气动特性进行数值模拟,计算结果与实验吻合良好。  相似文献   

6.
N-S方程数值研究翼型对微型扑翼气动特性的影响   总被引:1,自引:0,他引:1  
首先基于嵌套网格发展了一套适用于三维扑翼研究的非定常雷诺平均Navier-Stokes(RANS)方程数值模拟方法.为了解决微型扑翼在低马赫数下的收敛问题,使用了预处理方法,湍流模型为BL模型.在该方法的基础上,保持状态参数和扑翼表面形状一定的情况下,分别研究了一系列不同厚度、不同弯度的翼型对于微型扑翼气动特性的影响....  相似文献   

7.
研究群组中个体之间的非定常流动机理,可以为仿生飞行器集群运动提供理论基础。采用基于有限元的计算流体力学方法,对前飞状态的扑翼群组个体之间水平间距对气动性能的影响进行研究。研究发现,水平间距对扑翼气动性能具有显著影响。在一定的垂直间距下,群组中扑翼可以在较小的水平间距下获得最佳的推力性能,在较大的水平间距下可以获得最佳的升力性能。扑翼气动性能的变化主要与群组中前翼和后翼的脱落涡相互作用密切相关。  相似文献   

8.
为了提高扑翼飞行器的飞行性能,借鉴大型鸟类的飞行运动特征,设计了一种以凸轮摇杆为扑动机构的新型扑翼飞行器,建立了扑动机构的运动学和气动力学模型.结果表明:通过大型鸟类翅翼扑动规律对凸轮机构进行优化设计,得到了扑翼下扑占据整个扑动行程的60%左右;而提出的凸轮摇杆扑动机构的运动学模型,能够求解扑翼飞行器的相关运动参数.基...  相似文献   

9.
通过进行微型扑翼飞行器低速风洞试验,研究了带弯度机翼下翼面翼刀对扑翼飞行器升阻特性的影响。文中进行了带翼刀机翼和不带翼刀机翼在不同迎角下的风洞吹风试验。试验结果表明,带翼刀机翼升力系数大于不带翼刀机翼升力系数,从而证明了翼刀可以阻止机翼下表面气流展向流动,起到增加机翼升力的作用。当扑翼在小迎角飞行时,带翼刀机翼可以有效地提高扑翼的气动效率,改善扑翼的飞行性能。研究结果可为带翼刀机翼在扑翼飞行器上的应用提供技术支持。  相似文献   

10.
为了探究柔性对于蜻蜓前翼在扑动向前飞行时的气动性能, 本文根据蜻蜓前翼的实际参数建立蜻蜓前翼模型, 提出了两种柔性分布方式即均匀柔性分布和沿蜻蜓前翼弦向的变柔性分布. 本文通过STAR-CCM+软件, 首先采用重叠网格和双向流固耦合技术, 用于实现蜻蜓前翼的扑动流固耦合, 其次通过改变蜻蜓前翼固体区域的杨氏模量函数从而实现蜻蜓前翼的两种不同柔性分布. 结果表明, 在均匀柔性分布条件下, 柔性翼在杨氏模量较小时的升力系数和阻力系数曲线的变化规律滞后于刚性翼半周期并且给飞行增加阻力, 但是随着杨氏模量的逐渐增加即柔性逐渐减小, 蜻蜓前翼受到的阻力减小, 获得的推力增加且推力给予蜻蜓前飞的动量增量、加速度以及时均推力系数先增加后减小. 在合理的非均匀柔性分布条件下, 柔性翼显著提高推力系数峰值和时均推力系数, 在扑动前飞时, 给予蜻蜓前翼较大的动量增量以及加速度. 两种柔性分布方式的蜻蜓前翼与刚性翼对比之下, 蜻蜓前翼在柔性为非均匀柔性分布时可以获得更好的气动性能.   相似文献   

11.
This paper presents a numerical investigation of the effects of chordwise flexibility on flapping wings at low Reynolds number. The numerical simulations are performed with a partitioned fluid–structure interaction algorithm using artificial compressibility stabilization. The choice of the structural dimensionless parameters is based on scaling arguments and is compared against parameters used by other authors. The different regimes, namely inertia-driven and pressure-driven wing deformations, are presented along with their effects on the topology of the flow and on the performance of a heaving and pitching flapping wing in propulsion regime. It is found that pressure-driven deformations can significantly increase the thrust efficiency if a suitable amount of flexibility is used. Significant thrust increases are also observed in zero pitching amplitude cases. The effects of the second and third deformation modes on the performances of pressure-driven deformation cases are discussed. On the other hand, inertia-driven deformations generally deteriorate aerodynamic performances of flapping wings unless the behavior of the wing deformation is modified by the presence of sustainable superharmonics in a way that produces slight improvements. It is also shown that wing flexibility can act as an efficient passive pitching mechanism that allows fair thrust and better efficiency to be achieved when compared to a rigid pitching–heaving wing.  相似文献   

12.
Numerous studies on the aerodynamics of insect wing flapping were carried out on different approaches of flight investigations, model experiments, and numerical simulations, but the theoretical modeling remains to be explored. In the present paper, an analytic approach is presented to model the flow interactions of wing flapping in air for small insects with the surrounding flow fields being highly unsteady and highly viscous. The model of wing flapping is a 2-D flat plate, which makes plunging and pitching oscillations as well as quick rotations reversing its positions of leading and trailing edges, respectively, during stroke reversals. It contains three simplified aerodynamic assumptions: (i) unsteady potential flow; (ii) discrete vortices shed from both leading and trailing edges of the wing; (iii) Kutta conditions applied at both edges. Then the problem is reduced to the solution of the unsteady Laplace equation, by using distributed singularities, i.e., sources/sinks, and vortices in the field. To validate the present physical model and analytic method proposed via benchmark examples, two elemental motions in wing flapping and a case of whole flapping cycles are analyzed, and the predicted results agree well with available experimental and numerical data. This verifies that the present analytical approach may give qualitatively correct and quantitatively reasonable results. Furthermore, the total fluid-dynamic force in the present method can be decomposed into three parts: one due to the added inertial (or mass) effect, the other and the third due to the induction of vortices shed from the leading-and the trailing-edge and their images respectively, and this helps to reveal the flow control mechanisms in insect wing flapping. The project supported by the National Natural Science Foundation of China (10072066) and the Chinese Academy of Sciences (KJCX-SW-LO4, KJCX2-SW-L2)  相似文献   

13.
Karimian  Saeed  Jahanbin  Zahra 《Meccanica》2020,55(6):1263-1294

In the present research, a new comprehensive model of a flexible articulated flapping wing robot using the bond graph approach is presented. The flapping kinematics of a two-section wing is introduced via the bond graph based approach on a hybrid mechanism providing amplitude and phase characteristics. The aerodynamic quasi-steady approach equipped with stall correlation is utilized according to the reduced flapping frequency and the angle of attack ranges. The local flow velocity and the wing position are calculated in both wing and body coordinates taking into account rotation and translation of the wing different parts. Estimation of the effective angle of attack is performed by calculating the instantaneous torque distribution on both wing sections. Aeroelastic modeling is employed in which the wing structure is assumed as an elastic Euler–Bernoulli beam at the leading edge with three linear torsional modes. In this novel integrated bond graph model, computation of the performance indices including the average lift and thrust, consumed and produced powers by flapping and mechanical efficiency are presented. Due to existence of the numerous geometric and kinematic parameters in articulated flexible flapping wing, such a model is essential for design and optimization. Consequently, an example of a typical parametric study and the results validation are carried out. It is indicated that the sensitivity of the bird performance to relative change in design variables would increase for out of phase flapping, second part stiffness, flapping amplitude, frequency and velocity respectively. It is interesting that by employing the reverse-phase flapping which is possible only via articulated wings, the maximum efficiency could be achieved. In addition, it is shown that adjusting the wing torsional stiffness is a crucial item in design of passive flapping robots. The key advantage of the two-section flapping wing is depicted as the controlling capability of the angle of attack in the outer part of the wing. Finally, the improved version of the bird is being addressed by approximately 15% progress in propulsive efficiency.

  相似文献   

14.
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment. They generate and control aerodynamic forces by flapping their flexible wings. While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight, they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing. In order to test the hypothesis, the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility. The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology, the kinematics, the structural dynamics, the aerodynamics and the fluid–structure interactions of a hovering hawkmoth. The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings. It is found that the aerodynamic forces on the flapping wings are affected by the gust, because of the increase or decrease in relative wingtip velocity or kinematic angle of attack. The passive shape change of flexible wings can, however, reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions, except for the downward gust. Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback, which works passively with minimal delay, and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.  相似文献   

15.
昆虫拍翼方式的非定常流动物理再探讨   总被引:5,自引:0,他引:5  
基于提出的理论模化方法来探讨昆虫拍翼方式的非定常流动物理. 以悬停飞行为 例,通过对拍翼运动的分析,不仅解释了昆虫利用高频拍翼的方式为何能够克服低雷诺数带 来的气动局限性(St \gg 1/Re),而且还指出高升力产生和调节的3个流动 控制因素:(1) 由于拍翼的变速运动即时引起了流体动力响应,这种附加惯性效应 可产生瞬时的高升力; (2) 保持前缘涡不脱离翼面有助于减少升力的下降; (3) 增大后缘涡的强度并加速其脱离后缘能够有效地提高升力.  相似文献   

16.
The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.  相似文献   

17.
The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号