首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the effects of different wheel grouser shapes on the traction performance of a grouser wheel traveling on sandy terrain. Grouser wheels are locomotion gears that allow small and lightweight exploration rovers to traverse on the loose sand on extraterrestrial surfaces. Although various grouser shapes have been analyzed by some research groups, a more synthetic and direct comparison of possible grousers is required for practical applications. In this study, we developed a single wheel testbed and experimentally investigated the effects of four grouser shapes (parallel, slanted, V-shaped, and offset V-shaped) on the traction performance of linear movement on flat sand. The wheel slip, sinkage, traction and side force acting on the wheel axle, the wheel driving torque, and the efficiency of each wheel were examined. Thereafter, the effects on the lateral slope traversability of a small and lightweight four-wheeled rover with different grouser shapes were also examined. The traversability experiment demonstrated the vehicle mobility performance in order to contribute to the design optimization of rover systems. These experimental results and their comparisons suggested that, of the shapes studies herein, the slanted shape was the optimal grouser design for use in wheeled rovers on lunar and planetary soil.  相似文献   

2.
To investigate influences of gravity on mobility of wheeled rovers for future lunar/planetary exploration missions, model experiments of a soil-wheel system were performed on an aircraft during variable gravity maneuvers. The experimental set-up consists of a single rigid wheel and a soil bed with two kinds of dry sands: lunar soil simulant and Toyoura sand. The experimental results revealed that a lower gravity environment yields higher wheel slippage in variable gravity conditions. In addition to the partial gravity experiments, the same experiments with variable wheel load levels were also performed on ground (1 g conditions). The on-ground experiments produced opposite results to those obtained in the partial gravity experiments, where a lower wheel load yields lower slippage in a constant gravity environment. In low gravity environments, fluidity (flowability) of soil increases due to the confining stress reduction in the soil, while the effect of the wheel load on sinkage decreases. As a result, both of these effects are canceled out, and gravity seemingly has no effect on the wheel sinkage. In the meantime, in addition to the effect of wheel load reduction, the increase of the soil flowability lessens the shear resistance to the wheel rotation, as a result of which the wheel is unable to hold sufficient traction in low gravity environments. This suggests that the mobility of the wheel is governed concurrently by two mechanisms: the bearing characteristics to the wheel load, and the shearing characteristics to the wheel rotation. It appears that, in low gravity, the wheel mobility deteriorates due to the relative decrease in the driving force while the wheel sinkage remains constant. Thus, it can be concluded that the lunar and/or Mars’ gravity environments will be unfavorable in terms of the mobility performance of wheels as compared to the earth’s gravity condition.  相似文献   

3.
Nowadays, the existing walking wheels still have problems with the wheel-legs structure and the traction trafficability on the loose sand. It is commonly believed that African ostrich (Struthio camelus) is a kind of bipedal species with superior running performance on the sandy environment. Being enlightened by this, four bionic walking wheels (herringbone wheel, in-line wheel, V-shaped wheel and combination wheel) were designed and tested by imitating the structure and posture of ostrich’s feet travelling on sand. The results showed that when the wheel load was 20, 30 and 50N respectively and the slip ratio was less than 35%, the herringbone wheel had better traction trafficability than that of other wheels. When the wheel load was 30, 50 and 70N and the slip ratio was more than 35%, the in-line wheel had better performance than that of other wheels. It was shown in this thesis that the bionic walking wheels designed with the multi-posture wheel-legs and the simple structure could reduce the soil resistance and the disturbance to sand, thereby achieving a superior performance of traveling on sand. In addition, a new idea and research method for designing of walking mechanism on soft terrain has been provided in this thesis.  相似文献   

4.
This paper investigates the traveling and abrasion characteristics of rigid wheels for a lunar exploration rover at atmospheric pressure and in a vacuum. For this investigation, a traveling test system that enables the wheel to continuously travel over a long distance was developed. Using this system, tests on traveling performance and abrasion were conducted with the wheel on a lunar regolith simulant surface. In the initial tests, various wheels traveled over different ground conditions and their performances were evaluated based on the relationship between the drawbar pull and slippage. In the later tests, a wheel with grousers traveled a distance of 3 km and the abrasion was analyzed at various intervals. From the traveling performance tests, it was found that for a soft ground condition, the traveling performance of the wheels in vacuum was slightly lower than that in atmosphere. This indicates that ground tests performed in atmosphere overestimate the actual performance on the lunar surface. The abrasion tests suggested that the scratching of wheels occurs more easily in vacuum than in atmosphere. These experiments confirmed that the abrasion of the wheels do not cause any critical problem for a traveling distance of up to 3 km in a simulated lunar environment.  相似文献   

5.
The development of wheels for the Lunar Roving Vehicle   总被引:2,自引:0,他引:2  
The Lunar Roving Vehicle (LRV) was developed for NASA’s Apollo program so astronauts could cover a greater range on the lunar surface, carry more science instruments, and return more soil and rock samples than by foot. Because of the unique lunar environment, the creation of flexible wheels was the most challenging and time consuming aspect of the LRV development. Wheels developed for previous lunar systems were not sufficient for use with this manned vehicle; therefore, several new designs were created and tested. Based on criteria set by NASA, the choices were narrowed down to two: the wire mesh wheel developed by General Motors, and the hoop spring wheel developed by the Bendix Corporation. Each of these underwent intensive mechanical, material, and terramechanical analyses, and in the end, the wire mesh wheel was chosen for the LRV. Though the wire mesh wheel was determined to be the best choice for its particular application, it may be insufficient towards achieving the objectives of future lunar missions that could require higher tractive capability, increased weight capacity, or extended life. Therefore lessons learned from the original LRV wheel development and suggestions for future Moon wheel projects are offered.  相似文献   

6.
Most of the current lunar rover vehicle wheels are inconvenient for changing broken wheels and have poor shock absorbing in driving, so they cannot be used to carry people on the moon. To meet the demands for manned lunar transportation, a new wheel possessing a woven metal wire mesh tire and using hub-rim combination slide mechanism is designed in this article. The characteristics of the new wheel is analyzed by comparing with the same-size conventional rover wheels after demonstrating the validity of FEM simulation. The new wheel possesses lighter structure and superior shock absorbing. It also provides stronger traction because the deformation of the designed wheel increases the contact area between the tire and lunar terrain. In order to establish an on-line soil parameter estimation algorithm for low cohesion soil, the stress distribution along a driven deformable wheel on off-road terrain is simplified. The basic mechanics equations of the interaction between the wheel and the lunar soil can be used for analytical analysis. Simulation results show that the soil estimation algorithm can accurately and efficiently identify key soil parameters for loose sand.  相似文献   

7.
Off-road terrain can often be regarded as a finite thickness ground consisting of a soft soil layer on a rigid base. Experiments for the traveling performance of a wheel in a dense sand layer on a rigid base revealed that as the soil layer thickness decreases under the condition of high constant slip, the drawbar pull does not increase monotonically but increases gradually to a maximal value, then decreases to a minimal value, and thereafter again increases rapidly to the highest value at zero soil layer thickness. The mechanical interpretation of the relationship between the drawbar pull and the soil layer thickness is given qualitatively from the aspects of the shear characteristics of dense sand and the rigid-body friction between the wheel and the rigid base of the soil layer. It is indicated that the relationship takes the same form as van der Waals' state equation for the pressure and the volume of an imperfect gas with a phase transition between gas and liquid. The equation representing the relationship of the drawbar pull to the soil layer thickness is proposed in accordance with van der Waals' equation.  相似文献   

8.
Conventional ground-wheeled vehicles usually have poor trafficability, low efficiency, a large amount of energy consumption and possible failure when driving on soft terrain. To solve this problem, this paper presents a new design of transformable wheels for use in an amphibious all-terrain vehicle. The wheel has two extreme working statuses: unfolded walking-wheel and folded rigid wheel. Furthermore, the kinematic characteristics of the transformable wheel were studied using a kinematic method. When the wheel is unfolded at walking-wheel status, the displacement, velocity and acceleration of the wheel with different slip rates were analyzed. The stress condition is studied by using a classic soil mechanics method when the transformable wheel is driven on soft terrain. The relationship among wheel traction, wheel parameters and soil deformation under the stress were obtained. The results show that both the wheel traction and trafficability can be improved by using the proposed transformable wheel. Finally, a finite element model is established based on the vehicle terramechanics, and the interaction result between the transformable wheel and elastic–plastic soil is simulated when the transformable wheel is driven at different unfold angles. The simulation results are consistent with the theoretical analysis, which verifies the applicability and effectiveness of the transformable wheel developed in this paper.  相似文献   

9.
To control speed and wheel slip for severe conditions of tire-surface interaction is a challenging task in the design of traction control system for electric vehicles with off-road capability. In this regard, the present paper focuses on a specific traction control for an electric vehicle with four individual in-wheel motors over icy road. The study demonstrates that a proper integration of the speed controller and wheel slip controller can essentially improve the mobility of the vehicle in the cases of acceleration and slope climbing. The paper discusses relevant case studies with particular attention given to the system architecture (sliding mode and PID control methods), extremum-seeking algorithm for maximum tire-road friction and corresponding slip value, and experimental validation of the tire model used in the controller with the help of the Terramechanics Rig in the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Polytechnic Institute and State University.  相似文献   

10.
The purpose of this study is to analyze the performance of a lugged wheel for a lunar micro rover on sloped terrain by a 2D discrete element method (DEM), which was initially developed for horizontal terrain. To confirm the applicability of DEM for sloped terrain locomotion, the relationships of slope angle with slip, wheel sinkage and wheel torque obtained by DEM, were compared with experimental results measured using a slope test bed consisting of a soil bin filled with lunar regolith simulant. Among the lug parameters investigated, a lugged wheel with rim diameter of 250 mm, width of 100 mm, lug height of 10 mm, lug thickness of 5 mm, and total lug number of 18 was found, on average, to perform excellently in terms of metrics, such as slope angle for 20% slip, power number for self-propelled point, power number for 15-degree slope and power number for 20% slip. The estimation of wheel performance over sloped lunar terrain showed an increase in wheel slip, and the possibility exists that the selected lugged wheel will not be able to move up a slope steeper than 20°.  相似文献   

11.
Trafficability of terrain is a function of soft soil, hard or rough ground, geometric obstacles, vegetation, and the riverine environment. All of these terrain aspects are altered by cold temperatures and snow cover. This paper examines the effect of snow cover on obstacle crossing performance of vehicles. The mathematical expressions describing step negotiation, trench crossing, and slope climbing on snow-covered obstacles are given in terms of tracked vehicle, obstacle, and snow parameters.Tests of two tracked vehicles on snow-covered slopes, stream crossings, steps, and trenches were conducted, and some of the results were compared with computed values. Differences between computed and experimental values are attributed to neglecting slip-sinkage and track deflection in the computations.  相似文献   

12.
Grouser wheels have been used in planetary rovers to improve mobility performance on sandy terrains. The biggest difference between a wheel with and without grousers is the soil behavior beneath the wheel as the grousers shovel the soil. By analyzing the soil flow, we gain insight into the mechanics dominating the interaction between the wheel and the soil, directly impacting performance. As the soil flow varies depending on the soil properties, the effects of soil type on soil behavior and wheel-traveling performance should be studied. This paper reveals the difference in soil flow and wheel performance on cohesive and non-cohesive soils. We conducted a series of single wheel tests over different types of soils under several wheel-traveling conditions. Soil flow was visualized by using particle image velocimetry (PIV). The experimental results indicate that soil flow characteristics highly depend on the shear strength of the soil. The cohesive soil exhibited lower fluidity due to its higher shear strength. At the same time, the wheel displayed a higher traveling performance over the cohesive soil, that is, a lower slip ratio.  相似文献   

13.
Off-road vehicle performance is strongly influenced by the tire-terrain interaction mechanism. Soft soil reduces traction and significantly modifies vehicle handling; therefore tire dynamics plays a strong role in off-road mobility evaluation and needs to be addressed with ad-hoc models. Starting from a semi-empirical tire model based on Bekker–Wong theory, this paper, analyzes the performance of a large four wheeled vehicle driving on deformable terrain. A 14 degree of freedom vehicle model is implemented in order to investigate the influence of torque distribution on tractive efficiency through the simulation of front, rear, and all wheel drive configuration. Results show that optimal performance, regardless vertical load distribution, is achieved when torque is biased toward the rear axle. This suggests that it is possible to improve tractive efficiency without sacrificing traction and mobility. Vehicle motion is simulated over dry sand, moist loam, flat terrain and inclined terrain.  相似文献   

14.
This paper presents an analysis, based on a particle image velocimetry method, of soil flow field beneath a grouser wheel traveling over loose soil. Although the grouser wheel is expected to have better traction and mobility over fine, loose soil, its interaction mechanisms with the soil remain to be elucidated. Thus, a particle image velocimetry-based soil flow analysis is conducted to directly observe soil behavior around the grouser wheel. In the experimental analysis, key parameters of the soil flow field, such as general shape, thickness, streamlines of the flow field, soil velocity on the streamlines, and soil failure angle are examined quantitatively. From the results, the soil flow shape periodically changes with wheel rotation, and this change appears, depending on wheel slip varying over time. Furthermore, the experimental result of the soil failure angle differs drastically from its typical theory. These results will contribute to modeling the mechanical interaction between the grouser wheel and soil.  相似文献   

15.
Bekker’s semi-empirically derived equations allow the designers of off-road vehicles to understand and predict vehicle mobility performance over deformable terrains. However, there are several underlying assumptions that prevent Bekker theory from being successfully applied to small vehicles. Specifically, Bekker’s sinkage and compaction resistance equations are inaccurate for vehicles with wheel diameters less than approximately 50 cm and normal loading less than approximately 45 N. This paper presents a modified pressure-sinkage model that is shown to reduce sinkage and compaction resistance model errors significantly. The modification is validated with results from 160 experiments using five wheel diameters and three soil types.  相似文献   

16.
17.
Planetary rovers need high mobility on a rough terrain such as sandy soil, because such a terrain often impedes the rover mobility and causes significant wheel slip. Therefore, the accurate estimation of wheel soil interaction characteristics is an important issue. Recent studies related to wheel soil interaction mechanics have revealed that the classical wheel model has not adequately addressed the actual interaction characteristics observed through experiments. This article proposes an in-wheel sensor system equipped with two sensory devices on the wheel surface: force sensors that directly measure the force distribution between the wheel and soil and light sensors that accurately detect the wheel soil surface boundary line. This sensor design enables the accurate measurement of wheel terrain interaction characteristics such as wheel force distribution, wheel–soil contact angles, and wheel sinkage when the powered wheel runs on loose sand. In this article, the development of the in-wheel sensor system is introduced along with its system diagram and sensor modules. The usefulness of the in-wheel sensor system is then experimentally evaluated via a single wheel test bench. The experimental results confirm that explicit differences can be observed between the classical wheel model and practical data measured by the in-wheel sensor system.  相似文献   

18.
A work optimization strategy is combined with algorithms within the vehicle-terrain interface (VTI) model to maximize the traction of a four-wheel vehicle operating on loose dry sand. The optimization model distributes traction among the steered and non-steered wheels with the work optimum coefficient (WOC) of each wheel treated as an independent design objective. Drawbar pull (DBP), motion resistance (MR), longitudinal traction coefficient (LTC), lateral force coefficient (LFC), tire deflection, and wheel slip are key parameters that appear in the VTI model for traction performance analysis. The analysis includes wheels of different diameters, widths, heights, and inflation pressures, under variable wheel slips. A multi-objective optimization problem is formulated over a thirteen-dimensional search space bounded by eight design constraints. The generalized reduced gradient method is used to predict optimal values of the design variables as well as ground and traction parameters such as DBP, MR, LTC, and LFC for maximum slope climbing efficiency. The WOCs are maximized for lateral slip angles between 0° and 24° to find a set of Pareto optimal solutions over a wide range of weight factors. A method to apply the optimization results for predicting vehicle performance and traction control on dry sand is presented and discussed.  相似文献   

19.
In this study, we describe a mathematical model designed to allow for the determination of the mechanical relationship existing between soil characteristics and the primary design factors of a tracked vehicle, and to predict the tractive performance of this tracked vehicle on soft terrain. On the basis of the mathematical model, a computer simulation program (Tractive Performance Prediction Model for Tracked Vehicles; TPPMTV) was developed in this study. This model took into account the characteristics of the terrain, including the pressure-sinkage, the shearing characteristics, and the response to the repetitive loading, as well as the primary design parameters of the tracked vehicle. The efficacy of the developed model was then confirmed via comparison of the drawbar pulls of tracked vehicles predicted using the simulation program TPPMTV, with those determined as the result of traction tests. The results indicated that the predicted drawbar pulls, with the change in slip, were quite consistent with the ones measured in the traction test, for the changes in the weight of the vehicle, the initial track tension, and the number of roadwheels within the entire slip range. Thus, we concluded that the simulation program developed in this study, named TPPMTV, proved useful in the prediction of the tractive performance of a tracked vehicle, and that this system might be applicable to the design of a vehicle, possibly enabling a significant improvement in its functions.  相似文献   

20.
Based on the WES mobility prediction system, which allows the determination of system output (pull coefficient) and system input (torque coefficient) at 20% slip and the determination of the towed force coefficient, a technique was developed for predicting power requirements for wheels operating in sand as a function of system output for the full operating range from the towed condition to the 20% slip condition. Separate relations of system output and system input as functions of slip can be predicted also. Possibilities for incorporating this prediction method as a soil submodel into an overall vehicle mobility simulation model are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号