首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 132 毫秒
1.
The damage effects of water sorption on the mechanical properties of the hydroxya-patite particle reinforced Bis-GMA/TEGDMA copolymer (HA/Bis-GMA/TEGDMA) have been predicted using 3D finite cell models. The plasticizer effect on the polymer matrix was considered as a variation of its Young's modulus. Three different cell models were used to determine the influence of varying particle contents, interphase strength and moisture concentration on the debonding damage. The stress distribution pattern has been examined and the stress transfer mode clarified. The Young's modulus and fracture strength of the Bis-GMA/TEGDMA composite were also predicted using the model with and without consideration of the damage. The former results with consideration of the debonding damage are in good agreement with existing literature experimental data. The shielding effect of our proposed model and an alternative approach were discussed. The FCC cell model has also been extended to predict the critical load for the damaged and the undamaged composite subject to the 3-point flexural test.  相似文献   

2.
The state-space method is employed to evaluate the modal parameters of functionally graded, magneto-electro-elastic, and multilayered plates. Based on the assumption that the properties of the functionally graded material are exponential, the state equation of structural vibration which takes the displacement and stress of the structure as state variables is derived. The natural frequencies and modal shapes are calculated based on the general solutions of the state equation and boundary conditions given in this paper. The influence of the functionally graded exponential factor on the elastic displacement, electric, and magnetic fields of the structure are discussed by assuming a sandwich plate model with different stacking sequences.  相似文献   

3.
The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed.  相似文献   

4.
A detailed fracture mechanics analysis of bridge-toughening in a fiberreinforced composite is presented in this paper.The integral equation governing bridge-toughening as well as crack opening displacement (COD) for the composite withinterfacial layer is derived from the Castigliano's theorem and interface shear-lagmodel.A numerical result of the COD equation is obtained using the iteration solutionof the second Fredholm integral equation.In order to investigate the effect of variousparameters on the toughening,an approximate analytical solution of the equation ispresent and its error analysis is performed,which demonstrates the approximatesolution to be appropriate.A parametric study of the influence of the crack length,interracial shear modules,thickness of the interphase,fiber radius,fiber volumefraction and properties of materials on composite toughening is therefore carried out.The results are useful for experimental demonstration and toughening design includingthe fabrication process of the composite.  相似文献   

5.
Multilayer piezoelectric ceramic displacement actuators are susceptible to cracking in the region near the edge of the internal electrode, which may cause system damage or failure. In this paper, the stress distribution of a multilayer piezoelectric composite is investigated in a working environment and the optimized geometrical con?guration of the piezoelectric layer is obtained. The stress distribution in the structure and the stress concentration near the edge of th…  相似文献   

6.
The solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material was investigated by using the generalized Almansi’s theorem and the Schmidt method.The problem was formulated through Fourier transform into three pairs of dual integral equations,in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations,the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials.Finally,the relations between the electric filed,the magnetic flux field and the stress field near the crack edges were obtained and the efects of the shape of the rectangular crack on the stress,the electric displacement and magnetic flux intensity factors in a piezoelectric/piezomagnetic composite material were analyzed.  相似文献   

7.
The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influence of stress-dependent thermal conductivity on the heat transfer behavior of a GaN-based nanofilm is investigated.The finite element method is adopted to simulate the temperature distribution in a prestressed nanofilm under heat pulses.Numerical results demonstrate the effect of stress field on the thermal conductivity of GaN-based nanofilm,namely,the prestress and the thermal stress lead to a change in the heat transfer behavior in the nanofilm.Under the same heat source,the peak temperature of the film with stress-dependent thermal conductivity is significantly lower than that of the film with a constant thermal conductivity and the maximum temperature difference can reach 8.2 K.These results could be useful for designing GaN-based semiconductor devices with higher reliability under multi-physical fields.  相似文献   

8.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

9.
The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.  相似文献   

10.
Poly(N-isopropylacrylamide)(PNIPAM) microgels are widely used in drug delivery due to their fast response to temperature.In order to get a better biocompatibility,PNIPAM microgels are typically coated with a layer of biocompatible material,resulting in composite microgels with core-shell structure.In a composite microgel prepared recently,for example,a microsphere of PNIPAM gel is enclosed by a phospholipid membrane,and the composite microgel exhibits a substantial volume transition in response to temperature changes.Here we develop a theoretical model to describe the thermal-responsive behavior of this composite microgel.In particular,we treat the phospholipid membrane as an elastic layer behaving like rubber-like elastomers and adopt the form of the free-energy function for nematic gels(which refer to anther species of thermalsensitive gels whose behavior has been intensively studied) as that for PNIPAM gels.We show that the thermal-responsive behavior of the composite microgel can be markedly influenced by the membrane.By investigating the state of stress on the interface,we further predict that when the coating membrane is stiff and thin,wrinkles are expected to occur on the outer surface of the composite microgel after the volume transition.  相似文献   

11.
研究了含共晶界面陶瓷复合材料的损伤应变场及其尺度效应。根据含共晶界面复合陶瓷的细观结构特性,利用含共晶界面陶瓷复合材料中三相胞元内的应力场分布规律,得出棒状共晶体内的无损应变场分布规律。针对棒状共晶体内存在损伤的现象,通过引入损伤变量,利用三相模型法得到了棒状共晶体内存在损伤时的应变场分布规律;根据应变和纤维状夹杂直径之间的关系,分析了棒状共晶体内的损伤应变场及其尺度效应。结果表明,含共晶界面陶瓷复合材料内三相胞元中基体、界面相和纤维夹杂内的损伤应变场对纤维夹杂直径具有明显的尺度效应。  相似文献   

12.
连续纤维增韧的碳化硅复合材料(以下简称C/SiC),作为超高速飞行器热结构使用时,有可能在高温环境下受到高速撞击的作用,因此,掌握其在极端环境(高温、高应变率)下的力学性能是进行结构安全设计的基础。本文采用具有高温实验能力的分离式Hopkinson杆,在293~1273K温度范围内进行了动态压缩力学性能测试,研究了环境温度和加载速率对材料力学性能的影响。结果表明:C/SiC复合材料的高温压缩力学性能主要受应力氧化损伤和残余应力的共同影响。实验温度低于873K时,应力氧化损伤的影响很小,而由于增强纤维和基体界面残余应力的释放使界面结合强度增大,复合材料的压缩强度随温度的升高而增大;当实验温度高于873K时,应力氧化损伤加剧,其对压缩强度的削弱超过残余应力释放对强度的贡献,材料的压缩强度随温度的升高逐渐降低。由于应力氧化损伤受应变率的影响很大,当温度由873K升高至1273K时,高应变率下压缩强度降低的程度要比应变率为0.0001/s时低得多。  相似文献   

13.
In the present study, an effective model is proposed to predict the effective elastic behavior of the three-phase composite containing spherical inclusions, each of which is surrounded by an interphase layer. The constitutive equations are derived for the stress and strain of each phase of the composite subjected to a far-field tension. Based on these constitutive laws, the effective bulk, shear and Young’s modulus are obtained. A statistical debonding criterion is adopted to characterize the varying probability of the evolution of interphase debonding. Influences of debonding damage, particle volume fraction, interphase properties and bonding strength on overall mechanical behavior of composites are also discussed. Numerical analyses are carried out on particle-reinforced composites and the predictions have a good agreement with the experimental results.  相似文献   

14.
Dislocations mobility and stability in the carbon nanotubes (CNTs)-reinforced metal matrix nanocomposites (MMNCs) can significantly affect the mechanical properties of the composites. However, current processing techniques often lead to the formation of coated CNT (amorphous interphase exists between the reinforcement and metal matrix), which have large impact upon the image force exerting on dislocations. Even though the importance of the interphase zone formed in metal matrix composites has been demonstrated by many studies for elastic properties, the influence of interphase on the local elastoplastic behavior of CNT-reinforced MMNCs is still an open issue. This paper puts forward a three-phase composite cylinder model with new boundary conditions. In this model, the interaction between edge dislocations and a coated CNT incorporating interface effect is investigated. The explicit expressions for the stress fields and the image force acting on an edge dislocation are proposed. In addition, plastic flow occurring around the coated reinforcement is addressed. The influences of interface condition and the material properties of coated CNT on the glide/climb force are clearly analyzed. The results indicate that the interface effect becomes remarkable when the radius of the coated reinforcement is below 10 nm. In addition, different from the traditional particles, the coated CNT attracts the adjacent edge dislocations, causing pronounced local hardening at the interface between the interphase and the metal matrix under certain conditions. It is concluded that the presence of the interphase can have a profound effect on the local stress field in CNT-reinforced MMNCs. Finally, the condition of the dislocations stability and the equilibrium numbers of dislocations at a given size grain are evaluated for considering the interface effect.  相似文献   

15.
A micro-mechanical damage model is proposed to predict the overall viscoplastic behavior and damage evolution in a particle filled polymer matrix composite. Particulate composite consists of polymer matrix, particle fillers, and an interfacial transition interphase around the filler particles. Yet the composite is treated as a two distinct phase material, namely the matrix and the equivalent particle-interface assembly. The CTE mismatch between the matrix and the filler particles is introduced into the model. A damage evolution function based on irreversible thermodynamics is also introduced into the constitutive model to describe the degradation of the composite. The efficient general return-mapping algorithm is exploited to implement the proposed unified damage coupled viscoplastic model into finite element formulation. Furthermore, the model predictions for uniaxial loading conditions are compared with the experimental data.  相似文献   

16.
界面特性对短纤维金属基复合材料蠕变行为的影响   总被引:1,自引:0,他引:1  
基于短纤维增强金属基复合材料(MMC)的单纤维三维模型(三相),利用粘弹性有限元分析方法对影响金属基复合材料的蠕变行为的因素进行了较为系统的分析。研究中主要讨论了界面特性和纤维取向角对金属基复合材料的蠕变性能的影响。研究结果发现,界面特性诸如厚度、模量和应力指数都对纤维最大轴应力和稳定蠕变率产生影响:稳态蠕变率随界面模量的增大而逐渐减小,当高于基体模量时基本保持不变;纤维轴应力的变化与蠕变率正好相反。稳态蠕变率随界面厚度、应力指数的增加而增大;而轴应力则随之减小。同时不同的纤维取向也影响金属基复合材料蠕变时的轴应力分布和稳态蠕变率。  相似文献   

17.
This paper deals with mechanical behavior of quasi-brittle materials in tension, such as concrete. Two elementary LEFM models are presented. Attention is focused on the crack phenomenon, highlighting the influence of initial damage on structural response. The first model consists of a plate of finite size with a central crack. The second model corresponds to an infinite plate with an infinite set of collinear cracks of equal length and spaced at a constant distance apart. For both models, an analytical study is conducted which leads to a determination of the link between critical stress and displacement, initially considering only the incremental displacement due to the damage present in the material, and subsequently also taking into account the elastic compliance of the structure. An analysis is also performed in which the concomitance of brittle fracture and plastic collapse is considered, which reveals interesting scale effects.  相似文献   

18.
杨宾华 《力学季刊》2016,37(2):412-420
压电纤维在未来的复合材料结构健康监测中具有重要作用.本文基于横观各向同性压电材料位移和应力连续条件以及经典的复势函数理论,讨论了同时受到平面内机械载荷和出平面电载荷作用时含有多个带涂层压电纤维的无限大线弹性基体的平面力学问题.首先将线弹性基体、涂层和压电纤维的应力场、位移场表示成复势函数,然后通过横观各向同性压电材料和线弹性材料的位移和应力连续条件确定复势函数表达式.将得到的复势函数表达式代入线弹性基体、涂层和压电纤维的的应力场、位移场公式可确定其应力场和位移场.最后,通过定量的案例讨论了涂层的材料属性对线弹性基体应力场的影响.案例分析表明涂层的材料属性对压电复合材料的应力场有重要的影响.  相似文献   

19.
The paper is concerned with the modelling, simulation and experimental characterisation of local shrinkage strains and stresses induced by thermo-oxidation phenomena in the IM7/977-2 carbon/epoxy composite material at elevated temperatures. The oxygen concentration and mechanical fields were established through a coupled model constructed from a unified multiphysical approach and the thermodynamics of irreversible processes. The model was implemented in the ABAQUS® finite element commercial code. Simulations of thermo-oxidation-induced matrix shrinkage were run at a local scale, i.e., the scale of the elementary constituents of the composite, the fibre and the matrix. The experimental assessment was done at the same scale, and the local matrix shrinkage profiles were measured by confocal interferometric microscopy.A good agreement was found between the simulated and measured profiles, validating the unified model. The thermo-oxidation induced stress field was analysed to understand the influence of the environment on the onset of damage in composite materials at elevated temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号