首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水平井砾石充填数值模拟研究进展   总被引:1,自引:0,他引:1  
综述了水平井数值模拟研究的最新进展,内容包括:水平井砾石充填 机理及技术难题、充填过程中平衡砂床高度、临界流速的计算模型,描述了筛管/井筒环空砂 浆流动、冲管/筛管环空纯携砂液流动以及它们之间流体的交换和向地层的滤失过程. 重点介 绍了$\alpha$波充填过程中流动数学模型的研究现状及影响水平井砾石充填的各个 因素和存在的问题.  相似文献   

2.
Direct numerical simulations are presented of MHD liquid metal flow and heat transfer in vertical annuli. Three annular gaps and four ratios of annular height to annular gap are considered. The walls of the external and internal cylinders are isothermal with the temperature of the outer cylinder being higher and, thus, buoyancy is the driving force. The results show that the fluid motion increases as the aspect ratio and the annular gap become larger. The presence of the magnetic field results to fluid deceleration and, thus, to flow stabilization. Additionally, non symmetric flow patterns develop, due to the magnetic field, resulting in differently sized normal and parallel wall layers, namely the Hartmann and the Roberts layers, respectively. For all annular gaps considered, the highest spatially averaged heat transfer rates are obtained for aspect ratios equal to 1.  相似文献   

3.
An analysis is made of unsteady convective heat transfer in a hydrodynamically stabilized steady turbulent flow of a viscous incompressible fluid in concentric annuli. The wall heat flux varies with time according to an arbitrary law. The formulation permits the heat transfer coefficient to vary also with time and position. The energy equation is solved using the method of superposition and separating variables by finite integral transform. Use of the generalized results is detailed illustrated by application to the case where the wall heat flux varies exponentially with time. Results are discussed subject to different Reynolds and Prandtl numbers.  相似文献   

4.
The steady-state conjugated turbulent heat transfer with axial conduction in the wall and convection boundary conditions is solved with the generalized integral transform technique for the flow of Newtonian fluid in parallel-plate duct. A lumped wall model that neglects transverse temperature gradients in the solid but that takes into account the axial heat conduction along the wall is adopted. Highly accurate results are presented for the fluid bulk and wall temperatures and Nusselt number. The effects of the conjugation parameter, Biot number, and the dimensionless channel length on Nusselt number and fluid bulk and wall temperatures are systematically investigated.  相似文献   

5.
A theoretical model is developed for the dynamics of a hanging tubular cantilever conveying fluid downwards; the fluid, after exiting from the free end, is pushed upwards in the outer annular region contained by the cantilever and a rigid cylindrical channel. This configuration thus resembles that of a drill-string with a floating fluid-powered drill-bit. The linear equation of motion is solved by means of a hybrid Galerkin–Fourier method, as well as by a conventional Galerkin method. Calculations are conducted for a very slender system with parameters appropriate for a drill-string, for different degrees of confinement of the outer annular channel; and also for another, bench-top-size experiment. For wide annuli, the dynamics is dominated by the internal flow and, for low flow velocities, the flow increases the damping associated with the presence of the annular fluid. For narrow annuli, however, the annular flow is dominant, tending to destabilize the system, giving rise to flutter at remarkably low flow velocities. The mechanisms underlying the dynamics are also considered, in terms of energy transfer from the fluid to the cantilever and vice versa, as are possible applications of this work.  相似文献   

6.
Heat exchange inside a specularly reflecting tube is analysed. Expressions are obtained for heat transfer between cross-sections, between incremental wall annuli, between finite wall annuli, and combinations of the above. The expressions are related to the angle factor for opposed discs, but are infinite summations; they are easily evaluated, requiring some 20 emissivity terms. The basic disc-to-disc expression also represents the fraction of radiation leaving a disc that is still propagating at some distance along the tube, including reflection. Special case results are obtained for the radiant loss from double and single ended holes. For the practical application considered, it was found that conduction and radiation could be treated separately, permitting evaluation of a radiation loss factor for a specularly reflecting tube between two heat reservoirs  相似文献   

7.
In the present paper, the heat transfer characteristics in the thermal entrance region of concentric annuli have been analysed for laminar and turbulent internal flow. Axial heat conduction effects in the fluid have been taken into account. The present paper shows an exact analytical solution for the problem of a piecewise uniform wall heat flux. The obtained analytical solution for the extended Graetz problem is as simple and efficient to compute as the related solution of the parabolic problem. The obtained results show the effect of axial heat conduction in the fluid for a semi-infinite heated section as well as for a finite length of the heated section. It is shown, that for a finite length of the heated section, axial heat conduction effects might be important even for higher Peclet number.  相似文献   

8.
According to the principle of fluid mechanics,the law of laminar,helical flow of power-law fluid in eccentric annuli is studied extensively in this paper.The apparent viscosity,velocities distribution of laminar helical flow of power-law fluid are discussed and calculating methods of flow rate and pressure loss are presented.The factors influencing flow are also analysed.On the basis of theoretical studies some new results of the present paper are compared with the theories of the helical flow of the power-law fluid in concentric annuli.The test verified that theoretical formulas in this article are proper and general.They can be used for calculating hydraulic parameters in drilling engineering.  相似文献   

9.
Numerical simulation of steady state operation of a vertical two phase closed thermosyphon is performed using the two-fluid methodology within Eulerian multiphase domain. A full scale axi-symmetric model is developed for computational fluid dynamics simulation of thermosyphon using ANSYS/FLUENT 13.0. The effects of evaporation, condensation and interfacial heat and mass transfer are taken into account within the whole domain. Cooling water jacket is also modelled along with the wall of thermosyphon to simulate the effect of conjugate heat transfer between the wall and fluid phase. The results obtained are presented and compared with available experimental investigations for a similar thermosyphon. It is established that two-fluid methodology can be used effectively for the purpose of simulation of two phase system like a typical thermosyphon.  相似文献   

10.
Baytas  A.C.  Grosan  T.  Pop  I. 《Transport in Porous Media》2002,49(2):191-207
Calculated free convection flows and heat transfer are presented for concentric spherical annular sectors, filled with a porous medium. Two isothermal walls and an adiabatic radial wall at the sector angle define the sectors. The governing equations (in the stream function and temperature formulation) are solved numerically using ADI (alternative direction implicit) finite-difference method. Over the range of geometric parameters examined, the obtained results for spherical annuli and low Rayleigh number Ra. As Ra increases, multicellular flows develop for small values of the aspect ratio parameter . In addition, analytical solutions of the governing equations were obtained for small values of Ra (1) and it was shown that these solutions agree well with those obtained numerically. Significant differences in the local heat transfer rates on the inner and outer walls of the spherical annuli were observed from these solutions.  相似文献   

11.
Transient conjugate natural convection heat transfer in open-ended vertical concentric annuli is investigated numerically. The governing equations of an induced laminar flow for a fluid of Pr=0.7 are solved using a finite-difference technique. The heating is achieved by a step change in the temperature of the outer surface of the outer tube while the inner surface of the inner tube is kept adiabatic. The range of Grashof number considered is 500≤Gr*≤105. The effects of solid-fluid conductivity ratio and diffusivity ratio on the transient induced flow characteristics are presented. Received on 25 March 1998  相似文献   

12.
The effect of a vertical alternating current, electric field, and heat transfer on a peristaltic flow of a dielectric viscoelastic Oldroyd fluid is studied. This analysis involves uniform and nonuniform annuli having a mild stenosis. The analytical solutions of equations of motion are based on the perturbation technique. This technique depends on two parameters: amplitude ratio and small wave number. Numerical calculations are performed to obtain the effects of several parameters, such as the electrical Rayleigh number, temperature gradient, Reynolds number, wave number, maximum height of stenosis, and Weissenberg numbers, on the distributions of velocity, temperature, electric potential, and wall shear stress. It is found that the above-mentioned distributions in the case of a convergent tapered tube are larger than those in the case of a non-tapered one as well as a diverging tapered tube.  相似文献   

13.
Analytical solutions are obtained for heat transfer in concentric annular flows of viscoelastic fluids modeled by the simplified Phan-Thien–Tanner constitutive equation. Solutions for thermal and dynamic fully developed flow are presented for both imposed constant wall heat fluxes and imposed constant wall temperatures, always taking into account viscous dissipation.Equations are presented for the normalized temperature profile, the bulk temperature, the inner and outer wall temperatures and, through their definitions for the inner and outer Nusselt numbers as a function of all relevant non-dimensional parameters. Some special results are discussed in detail. Given the complexity of the derived equations, for ease of use compact exact expressions are presented for the Nusselt numbers and programmes to calculate all quantities are made accessible on the internet. Generally speaking, fluid elasticity is found to increase the heat transfer for imposed heating at the wall, especially in combination with internal heat generation by viscous dissipation, whereas for imposed wall temperatures it reduces heat transfer when viscous dissipation is weak.  相似文献   

14.
The control of complex, unsteady flows is a pacing technology for advances in fluid mechanics. Recently, optimal control theory has become popular as a means of predicting best case controls that can guide the design of practical flow control systems. However, most of the prior work in this area has focused on incompressible flow which precludes many of the important physical flow phenomena that must be controlled in practice including the coupling of fluid dynamics, acoustics, and heat transfer. This paper presents the formulation and numerical solution of a class of optimal boundary control problems governed by the unsteady two‐dimensional compressible Navier–Stokes equations. Fundamental issues including the choice of the control space and the associated regularization term in the objective function, as well as issues in the gradient computation via the adjoint equation method are discussed. Numerical results are presented for a model problem consisting of two counter‐rotating viscous vortices above an infinite wall which, due to the self‐induced velocity field, propagate downward and interact with the wall. The wall boundary control is the temporal and spatial distribution of wall‐normal velocity. Optimal controls for objective functions that target kinetic energy, heat transfer, and wall shear stress are presented along with the influence of control regularization for each case. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
研究流体在偏心环空内流动的新方法   总被引:2,自引:0,他引:2  
使用双极坐标系研究流体在偏心环空内的流动。给出该坐标系下流体力学基本方程组。对牛顿流体的轴向流、旋转流求得它们的精确级数解和相应的数值结果。  相似文献   

16.
Effects of a conductive wall on natural convection in a square porous enclosure having internal heating at a rate proportional to a power of temperature difference is studied numerically in this article. The horizontal heating is considered, where the vertical walls heated isothermally at different temperatures while the horizontal walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and finite difference method is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (0 ???Ra ???1000), the internal heating and the local exponent parameters (0 ????? ???5), (1 ????? ???3), the wall to porous thermal conductivity ratio (0.44 ???Kr ???9.9) and the ratio of wall thickness to its width (0.02 ???D ???0.5). The results are presented to show the effect of these parameters on the fluid flow and heat transfer characteristics. It is found a strong internal heating can generate significant maximum fluid temperature more than the conductive solid wall. Increasing value thermal conductivity ratio and/or decreasing the thickness of solid wall can increase the maximum fluid temperature. It is also found that at very low Rayleigh number, the heat transfer across the porous enclosure remain stable for any values of the thermal conductivity ratio.  相似文献   

17.
This paper deals with the problem of combined (forced–free) convection in vertical eccentric annuli with simultaneously developing hydrodynamic and thermal boundary layers. A bipolar model has been developed and a numerical algorithm for solving this model is outlined. Results, not available in the literature, are presented for the developing velocity profiles, axial variation of pressure, full development length, and heat transfer parameters under thermal boundary conditions of having one of the annulus boundaries at a constant temperature while the other boundary is insulated. Both aiding and opposing free convection have been considered and possibilities of flow reversal occurrence have also been checked. After a distance from the channel entrance and provided that the value of Gr/Re is sufficiently large, aiding free convection can develop to overcome the fluid friction and the eccentric annular channel eventually works as a diffuser. The value of Gr/Re for which a vertical eccentric annular channel can work as a diffuser decreases as the eccentricity increases. The axial distance from the entrance at which the channel starts to work as a diffuser decreases as Gr/Re increases.  相似文献   

18.
The Graetz problem in heat transfer is extended to the analysis of mass transfer in circular ducts for the cases where wall resistance is included and where non-Newtonian fluids that obey Casson's equation are considered. The eigenvalues and fluid bulk coefficients are presented for the fluid between the extremes of Newtonian and slug flow. It is found that for fluids which are only slightly non-Newtonian, such as blood, which is closely approximated by Casson's equation, the mass transfer rate can be predicted by Newtonian fluid analysis without appreciable error. Some experimental results give support to the theory.  相似文献   

19.
This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical fea- tures of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.  相似文献   

20.
The steady-state flow of a third grade fluid between concentric circular cylinders is considered and entropy generation due to fluid friction and heat transfer in the annular pipe is examined. Depending upon the fluid viscosity, entropy generation in the flow system varies. The third grade fluid is employed to account for the non-Newtonian effect while Vogel model is accommodated for temperature-dependent viscosity. The analysis is based on perturbation technique. The closed form solutions for velocity, temperature and entropy fields are presented. Entropy generation due to fluid friction and heat transfer in the flow system is formulated. The influence of viscosity parameters A and B on the entropy generation number is investigated. It is found that entropy generation number reduces with increasing viscosity parameter A, which is more pronounced in the region close to the annular pipe inner wall and opposite is true for increasing viscosity parameter B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号