首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
When a tower crane is handling payload via rotation and moving the carriage simultaneously the jib structure and the payload can be modeled as a system consisting of a slewing flexible clamed-free beam with the spherical payload pendulum that moves along the beam. The present work completes the dynamic modeling of the system mentioned above. The clamed-free beam attached to a rotating hub is modeled by Euler–Bernoulli beam theory. The payload is modeled as a sphere pendulum of point mass attached to via massless inextensible cable the carriage moving on the rotating beam. Non-linear coupled equations of motion of the in- and out-of-plane of the beam and the payload pendulum are derived by means of the Hamilton principle. Some remarks are made on the equations of motion.  相似文献   

2.
田鑫  戈新生 《力学季刊》2015,36(3):442-450
研究Gauss伪谱法求解3D刚体摆姿态最优控制问题.针对其最优姿态控制问题,既要满足由任意位置运动到平衡位置姿态运动规划问题,又要满足系统含有动力学约束的力学模型问题,提出基于四元数来描述3D刚体摆的数学模型,建立3D刚体摆姿态的动力学和运动学方程,为了解决3D刚体摆在平衡位置处的姿态最优控制问题,设计基于Gauss伪谱算法的最优姿态开环控制器,得到了3D刚体摆的姿态最优控制轨迹,得到满足的可行解,通过仿真实验验证了其开环解在平衡位置的控制姿态最优性.  相似文献   

3.
The equations of motion for a lightly damped spherical pendulum are considered. The suspension point is harmonically excited in both vertical and horizontal directions. The equations are approximated in the neighborhood of resonance by including the third order terms in the amplitude. The stability of equilibrium points of the modulation equations in a four-dimensional space is studied. The periodic orbits of the spherical pendulum without base excitations are revisited via the Jacobian elliptic integral to highlight the role played by homoclinic orbits. The homoclinic intersections of the stable and unstable manifolds of the perturbed spherical pendulum are investigated. The physical parameters leading to chaotic solutions in terms of the spherical angles are derived from the vanishing Melnikov–Holmes–Marsden (MHM) integral. The existence of real zeros of the MHM integral implies the possible chaotic motion of the harmonically forced spherical pendulum as a result from the transverse intersection between the stable and unstable manifolds of the weakly disturbed spherical pendulum within the regions of investigated parameters. The chaotic motion of the modulation equations is simulated via the 4th-order Runge–Kutta algorithms for certain cases to verify the analysis.  相似文献   

4.
We study the plane motion of a double pendulum with fixed suspension point. The pendulum is controlled by a single moment applied to the internal hinge between the links. The moment is assumed to be bounded in absolute value. We construct a feedback control law bringing the pendulum from the position in which both links hang vertically downwards into the unstable upper position in which both links are inverted. The same feedback ensures the asymptotic stability of the pendulum in the upper equilibrium position. Since the pendulum can be brought to the lower equilibrium position from any initial states, it follows that the constructed control law ensures the global stability of the inverted pendulum.  相似文献   

5.
Experimental and numerical investigations are carried out on anautoparametric system consisting of a composite pendulum attached to aharmonically base excited mass-spring subsystem. The dynamic behavior ofsuch a mechanical system is governed by a set of coupled nonlinearequations with periodic parameters. Particular attention is paid to thedynamic behavior of the pendulum. The periodic doubling bifurcation ofthe pendulum is determined from the semi-trivial solution of thelinearized equations using two methods: a trigonometric approximation ofthe solution and a symbolic computation of the Floquet transition matrixbased on Chebyshev polynominal expansions. The set of nonlineardifferential equations is also integrated with respect to time using afinite difference scheme and the motion of the pendulum is analyzed viaphase-plane portraits and Poincaré maps. The predicted resultsare experimentally validated through an experimental set-up equippedwith an opto-electronic set sensor that is used to measure the angulardisplacement of the pendulum. Period doubling and chaotic motions areobserved.  相似文献   

6.
Dynamic response of tower cranes coupled with the pendulum motions of the payload is studied in this paper. A simple perturbation scheme and the assumption of small pendulum angle are applied to simplify the governing equation. The tower crane is modeled by the finite element method, while the pendulum motion is represented as rigid-body kinetics. Integrated governing equations for the coupled dynamics problem are derived based on Lagrange’s equations including the dissipation function. Dynamics of a real luffing crane model with the spherical and planar pendulum motions is analyzed using the proposed formulations and computational method. It is found that the dynamic responses of the tower crane are dominated by both the first few natural frequencies of crane structure and the pendulum motion of the payload. The dynamic amplification factors generally increase with the increase of the initial pendulum angle and the changes are just slightly nonlinear for the planar pendulum motion.  相似文献   

7.
方位径向摆的研究对机械工程领域有非常重要的用途,基于此,本文采用分析力学的方法对影响方位径向摆运行轨迹的因素进行了理论和实验研究。理论上通过建立拉格朗日函数,得到此系统的运动微分方程并对方程进行数值求解,实验上通过Tracker 软件追踪得到方位径向摆的实际运动轨迹,最终发现理论分析得到的杆长、绳长及其初始位置等参数对方位径向摆运行轨迹的影响与实验结果吻合较好。  相似文献   

8.
An open-plus-closed-loop (OPCL) control problem for the chaotic motion of a 3D rigid pendulum subjected to a constant gravitationM force is studied. The 3D rigid pendulum is assumed to be consist of a rigid body supported by a fixed and frictionless pivot with three rotational degrees. In order to avoid the singular phenomenon of Euler's angular velocity equation, the quaternion kinematic equation is used to describe the motion of the 3D rigid pendulum. An OPCL controller for chaotic motion of a 3D rigid pendulum at equilibrium position is designed. This OPCL controller contains two parts: the open-loop part to construct an ideal trajectory and the closed-loop part to stabilize the 3D rigid pendulum. Simulation results show that the controller is effective and efficient.  相似文献   

9.
A model of a snow layer represented by a continuous set of columns whose deformations are described by the nonlinear model of an ideal elastoplastic continuous medium with viscous properties is proposed. Under the action of a rigid wheel on snow, the field of shear stresses is specified by the law of dry friction. Prom the equations of motion describing the plane-parallel motion of the wheel, there are determined a zone of contact of the wheel with snow, the steady motions of the wheel, and a mode of slipping the wheel. The numerical results are given in tables and figures. These results are obtained by solving the nonlinear equations of motion containing definite integrals with variable integration limits.  相似文献   

10.
This paper deals with the forward and the inverse dynamic problems of mechanical systems subjected to nonholonomic constraints. The intrinsically dual nature of these two problems is identified and utilised to develop a systematic approach to formulate and solve them according to an unified framework. The proposed methodology is based on the fundamental equations of constrained motion which derive from Gauss’s principle of least constraint. The main advantage arising from using the fundamental equations of constrained motion is that they represent an effective method capable to derive the generalised acceleration of a mechanical system, constrained in general by a set of nonholonomic constraints, together with the generalized constraint forces (forward dynamics). When the constraint equations are used to represent the desired behaviour of the mechanical system under study, the generalised constraint forces deriving from the fundamental equations of constrained motion provide the control actions which reproduce the specified motion for the system (inverse dynamics). This approach is systematically extended to underactuated mechanical systems introducing a new method named underactuation equivalence principle. The underactuation equivalence principle is founded on the key idea that the underactuation property of a mechanical system can be mathematically represented using a particular set of nonholonomic constraint equations. Two simple case-studies are reported to exemplify the proposed methodology. In the first case-study the computation of the generalised constraint forces relative to the revolute joint constraints of a physical pendulum is illustrated. In the second case-study the calculation of the control action which solves the swing-up problem for an inverted pendulum is described.  相似文献   

11.
Summary The equations of motion governing the free vibrations of the compound centrifugal pendulum are stated, and the linearized solution is given. A comparison is then made between the exact (numerical) solution of the non-linear equations of motion and the linearized solution. This comparison is in the form of the ratio of the natural frequencies and is presented graphically and tabularly.  相似文献   

12.
In this paper, bifurcation theory is employed to classify different dynamical behaviors arising in an underactuated mechanical system subject to bounded controls. The methodology is applied to an inertia wheel pendulum consisting of a simple pendulum with a rotating disk at the end. Restricting the magnitude of the control action places an important obstacle to the design of a continuous controller capable of swinging-up and stabilize the pendulum at the inverted position: the arm only can reach that position by means of oscillations of increasing amplitude. The controller is derived from a simple nonlinear state-feedback law, followed by a saturating device that limits the maximum amplitude of the control action applied to the system. This bound gives birth to a rich dynamical behavior, including pitchfork and Hopf bifurcations of equilibria, saddle-node bifurcations of periodic orbits, homoclinic and heteroclinic bifurcations. The global dynamics is analyzed in terms of certain control gains and a two-parameter bifurcation diagram is derived. It is shown that the dynamics on this bifurcation diagram is organized in a pair of codimension-two rotationally symmetric bifurcation points. Finally, it is found out that when the control gains lie on a certain region in the parameter space simultaneous stabilization of the upright position together with a large basin of attraction is obtained. Simulation results show that almost global stabilization of the system can be achieved.  相似文献   

13.
杨旦旦  岳宝增 《力学学报》2012,44(2):415-424
基于Lyapunov稳定性理论研究了用动量轮控制一类带轻质悬臂梁附件的充液航天器的姿态机动控制问题, 其中晃动液体用黏性力矩球摆模型代替, 悬臂梁附件用若干集中质量代替. 用动量矩定理和Lagrange方程分别推导得到航天器主刚体、等效球摆、等效集中质量的动力学方程, 所用反馈控制律包含了与动量轮角加速度密切相关的权重因子, 利用系统初、终状态和到达最终姿态所需时间解析确定此权重因子. 同时利用Lyapunov稳定性理论得到了实现最终姿态机动的稳定性判据. 数值仿真表明所用控制律的有效性, 分析附件的相对主刚体平面的转角、相对系统质心的高度、长度、刚度、质量、阻尼系数和到达最终姿态所需时间等因素对控制过程中航天器剩余章动角的影响大小.   相似文献   

14.
The governing equations for the inverted pendulum is developed and shown to be analogous to the gravity modulated porous layer heated from below. In particular the temperature in a gravity modulated porous layer heated from below (R>0-unstable) is likened to the motion of an inverted pendulum (unstable). As gravity modulation stabilizes convection, Transport Porous Med. 57 (2004), 113, it is found that oscillating the pivot point of an unstable, inverted pendulum stabilizes the motion.  相似文献   

15.
建立一种刚性杆-弹簧摆刚柔耦合强非线性动力学系统模型,给出了无量纲的动力学微分方程.该模型同时存在小幅度快速振荡和大范围慢速摆动的快、慢双时间尺度变量.针对工程中此类系统数值求解容易产生的刚性问题,采用一种三次Hermite插值精细积分法进行数值计算.将频率比、摆长比和初始摆角作为控制参数,研究刚性杆-弹簧摆刚柔耦合系统快、慢变量的复杂动力学行为.通过数值仿真分析,发现系统在不同的控制参数组合下呈现出混沌运动状态,并给出了与系统运动状态相关的控制参数范围,为复杂的刚柔耦合多体系统的设计与数值分析提供了参考.  相似文献   

16.
In this paper, the mathematical model of the stabilization of the inverted pendulum with vertically oscillating suspension under hysteretic control is constructed. In the frame of the presented model, the stability criteria for the linearized equations of motion are found. We have made the numerical construction of the stability zones in the two-dimensional parameter space. Dependencies between initial conditions and driven parameters that provide periodic oscillations of the pendulum are obtained.  相似文献   

17.
Since Newton first considered the motion of a spherical pendulum over 200 years ago, many researchers have studied its dynamic response under a variety of conditions. The characteristic of the problem that has invited so much investigation was that a spherical pendulum paradigms much more complex phenomena. Understanding the response of a paradigm gives an almost multiplicative effect in the understanding of other phenomena that can be modeled as a variant of the paradigm. The spherical pendulum has been used to damp irregular motion in helicopters and on space stations as well as for many other applications. In this study an inverted impacting spherical pendulum with large deflection was investigated. The model was designed to approximate an ideal pendulum, with the pendulum bob contributing the vast majority of the mass moment of inertia of the system. Two types of bearing mechanisms and tracking devices were designed for the system, one of which had low damping coefficient and the other with a relatively high damping coefficient. An experimental investigation was performed to determine the dynamics of an inverted, impacting spherical pendulum with large deflection and vertical parametric forcing. The pendulum system was studied with nine different bobs and two different base configurations. During the experiments, the frequency of the excitation remained between 24.6 and 24.9 Hz. It was found that sustained conical motions did not naturally occur. The spherical pendulum system was analyzed to determine under what conditions the onset of Type I response (a repetitive motion in which the pendulum bob does not traverse through the apex. The bob strikes the same general area of the restraint without striking the opposite side of the restraint.), sustainable Type II response (this is the repetitive motion in which the pendulum bob traverses through the apex. The bob strikes opposite sides of the restraint.), and mixed mode response (motion in which the pendulum bob randomly strikes either the same area of the restrain or the opposite side of the restraint) occurred.  相似文献   

18.
研究伪谱法求解三维刚体摆姿态运动最优控制问题. 针对三维刚体摆这类含有约束的力学模型,提出了基于勒让德伪谱法的三维刚体摆姿态最优控制方法. 利用插值逼近设计了三维刚体摆姿态运动最优控制算法,得到了三维刚体摆的姿态最优控制轨迹,并结合松弛参数来控制插值点的取值,寻找满足的可行解. 仿真结果表明,基于勒让德伪谱法的最优控制算法使得三维刚体摆能以较小的误差运动到期望的末端姿态,且计算速度快,能够获得精度较高的控制输入量.  相似文献   

19.
In accordance with the Kirchhoff analogy, the equilibrium equations of an elastic thread on a plane are equivalent to the equations of motion of a simple pendulum. This analogy is generalized to the case when the thread is situated on a smooth curved surface. The equilibrium equations for the threads in the general case and in the particular cases of flat, cylindrical, and spherical surfaces are derived. For these surfaces the Kirchhoff analogy is generalized to the case of a simple pendulum in an additional force field. There are also considered the electromagnetic and nonholonomic analogies for the equilibrium equations of an elastic thread.  相似文献   

20.
双臂空间机器人系统末端惯性空间轨迹的反馈跟踪控制   总被引:1,自引:0,他引:1  
葛景华  陈力 《力学季刊》2007,28(3):455-460
本文讨论了载体位置不受控制的双臂空间机器人系统的载体姿态与机械臂末端抓手协调运动的控制问题.结合系统的动量守恒关系对双臂空间机器人系统的运动学、动力学作了分析,推导出了系统的载体姿态与机械臂末端抓手协调运动的增广广义Jacobi关系.并以此为基础,给出在载体位置不受控制的情况下,惯性坐标系内双臂空间机器人系统的载体姿态与机械臂末端抓手协调运动的反馈跟踪控制规律.研究结果表明,在系统动力学模型及参数较精确确定的情况下,本文提出的控制方案能够有效地控制双臂空间机器人机械臂的末端抓手与载体姿态准确地完成指定的运动,而不需对其载体的位置进行主动控制.仿真计算结果证实了方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号