首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The problem of hydrodynamic interaction between a laminar flow of a viscous fluid and a partially permeable spherical particle is formulated and solved analytically. The filtration flow inside the particle is assumed to obey the Darcy law. Expressions for the filtration flow velocity, drag, sedimentation velocity, and stream functions are obtained. The effect of the permeability of the particle on the flow characteristics is studied. Stream functions of the flow are constructed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 48–53, July–August, 2009.  相似文献   

2.
Second-order differential equations of the hyperbolic type are derived for describing the local law of shock wave propagation. The shock waves are assumed to be two-dimensional unsteady in a stationary gas flow and three-dimensional steady in a supersonic flow. The behavior of the characteristics of these equations is investigated as a function of the governing flow parameters and their relative position with respect to the typical bicharacteristics of the characteristic cone behind the shock is analyzed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 159–165, May–June, 2000.  相似文献   

3.
 An empirical correlation for the onset of turbulence in physiological pulsatile flow is presented. We pumped three different test fluids of kinematic viscosity 0.008–0.035 cm2/s through four straight tubes 0.4–3.0 cm in diameter. A Scotch yoke mechanism provided an oscillatory sine wave flow component of known stroke volume and frequency. We adjusted the mean flow independently until we detected signal instabilities from hot film wall shear stress probes. The critical peak Reynolds number was found to correlate with the Womersley parameter and the Strouhal number as a power law function with a root-mean-square (rms) error of 15.2%. Experimental measurements of the laminar velocity profile are compared to theoretical predictions from Poiseuille’s law and Womersley’s solution. Received: 30 October 1995/Accepted: 7 April 1997  相似文献   

4.
A coupled intravascular–transvascular–interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille’s law and Darcy’s law, respectively, transvascular flow is described by Starling’s law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research. The project supported by the National Natural Science Foundation of China (10372026).  相似文献   

5.
A planar analog of conical flows is considered: an inviscid incompressible fluid flow around a wedge tip. A class of conical flows is found where vorticity is transported along streamlines by the potential component of velocity. Problems of a wave “locked” in the corner region and of a flow accelerating along the rib of a dihedral angle are considered. By analogy with an axisymmetric quasi-conical flow, a planar quasi-conical flow of the fluid is determined, namely, the flow inside and outside the region bounded by tangent curves described by a power law. Conditions are found where vorticity and swirl produce a significant effect. An approximate solution of the problem of the fluid flow inside a “zero” angle is obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 57–65, March–April, 2007.  相似文献   

6.
A steady-state plane channel flow of viscous incompressible fluid with no-slip and heat transfer boundary conditions is considered. The flow is induced by a fixed pressure difference and the fluid viscosity depends on the temperature in accordance with a power law. It is shown numerically that the dependence of the Peclet number on the nondimensional pressure difference is not single-valued. An investigation of the solution’s dependence on the Biot number shows that for Biot numbers greater than unity the velocity profile has a point of inflection. Perm’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 75–80, March–April, 2000. The work received financial support from the Russian Foundation for Basic Research (project N97-01-00063).  相似文献   

7.
The flow of a thin film of a nonlinearly viscous fluid whose stress tensor is modeled by a power law, flowing down a vertical plane in the field of gravity, is considered. For the case of low flow rates, an equation that describes the evolution of surface disturbances is derived in the long-wave approximation. The domain of linear stability of the trivial solution is found, and weakly nonlinear, steady-state travelling solutions of this equation are obtained. The mechanism of branching of solution families at the singular point of the neutral curve is described. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 73–84, May–June, 2005.  相似文献   

8.
The plane problem of steady flow of a homogeneous fluid in a five-point oil reservoir recovery element with a hydrofracture of finite conductivity is considered. It is assumed that the motion of the fluid in the reservoir and in the fracture obeys a linear resistance law and that the permeability of the reservoir and the effective permeability of the fracture are sharply different. Analytic solutions are obtained for the case of an ideal fracture (fracture of infinite conductivity). The flows are analyzed numerically with allowance for the finite conductivity of the fracture. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 104–112, January–February, 1994.  相似文献   

9.
The research carried out in [1–8] is developed by considering the self-similar problem of the unsteady separated flow over a plate expanding from a point with the constant velocity D of a plane-parallel stream of ideal fluid with velocity V. At infinity the flow is uniform, steady and normal to the surface of the plate. A wide range of values of the parameter α=V/D is investigated. On the value of α there depends, in particular, the direction of shedding of the vortex sheets (VS) which, in accordance with the Joukowsky-Chaplygin condition, occur in separated flow over a plate. A comparison is made with the results obtained when the sheets are replaced by vortex filaments (VF). In accordance with [9] the choice of the intensity of the VF ensures, like the introduction of VS, the finiteness of the flow velocity at the edges of the plate. Within the framework of the unsteady analogy and the law of plane sections the problem of the flow over a delta wing at an angle of attack reduces to the unsteady flow over an expanding plate investigated. In addition to [3, 9], this question was also examined in [10–15]. In [11–15] and in [3] the analysis is based on VS and in [9, 10] on VF. Special attention is paid to the topology of the flow, in particular, to the structure of the so-called conical streamlines and their points of convergence and divergence (this was done in [3] for a special, nonlinear law of expansion of the plate and a variable free-stream velocity). The results obtained for the models with VS and VF are compared over a broad range of values of α, not only with respect to the integral characteristics, as in [12], but also with respect to the flow patterns. Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 62–69, September–October, 1988.  相似文献   

10.
In this study, we use the method of homogenization to develop a filtration law in porous media that includes the effects of inertia at finite Reynolds numbers. The result is much different than the empirically observed quadratic Forchheimer equation. First, the correction to Darcy’s law is initially cubic (not quadratic) for isotropic media. This is consistent with several other authors (Mei and Auriault, J Fluid Mech 222:647–663, 1991; Wodié and Levy, CR Acad Sci Paris t.312:157–161, 1991; Couland et al. J Fluid Mech 190:393–407, 1988; Rojas and Koplik, Phys Rev 58:4776–4782, 1988) who have solved the Navier–Stokes equations analytically and numerically. Second, the resulting filtration model is an infinite series polynomial in velocity, instead of a single corrective term to Darcy’s law. Although the model is only valid up to the local Reynolds number, at the most, of order 1, the findings are important from a fundamental perspective because it shows that the often-used quadratic Forchheimer equation is not a universal law for laminar flow, but rather an empirical one that is useful in a limited range of velocities. Moreover, as stated by Mei and Auriault (J Fluid Mech 222:647–663, 1991) and Barree and Conway (SPE Annual technical conference and exhibition, 2004), even if the quadratic model were valid at moderate Reynolds numbers in the laminar flow regime, then the permeability extrapolated on a Forchheimer plot would not be the intrinsic Darcy permeability. A major contribution of this study is that the coefficients of the polynomial law can be derived a priori, by solving sequential Stokes problems. In each case, the solution to the Stokes problem is used to calculate a coefficient in the polynomial, and the velocity field is an input of the forcing function, F, to subsequent problems. While numerical solutions must be utilized to compute each coefficient in the polynomial, these problems are much simpler and robust than solving the full Navier–Stokes equations.  相似文献   

11.
Bread dough (a flour–water system) has been rheologically characterized using a parallel-plate, an extensional, and a capillary rheometer at room temperature. Based on the linear and nonlinear viscoelastic and viscoplastic data, two constitutive equations have been applied, namely a viscoplastic Herschel–Bulkley model and a viscoelastoplastic K–BKZ model with a yield stress. For cases where time effects are unimportant, the viscoplastic Herschel–Bulkley model can be used. For cases where transient effects are important, it is more appropriate to use the K-BKZ model with the addition of a yield stress. Finally, the wall slip behavior of dough was studied in capillary flow, and an appropriate slip law was formulated. These models characterize the rheological behavior of bread dough and constitute the basic ingredients for flow simulation of dough processing, such as extrusion, calendering, and rolling.  相似文献   

12.
A numerical study of mixed convection in a vertical channel filled with a porous medium including the effect of inertial forces is studied by taking into account the effect of viscous and Darcy dissipations. The flow is modeled using the Brinkman–Forchheimer-extended Darcy equations. The two boundaries are considered as isothermal–isothermal, isoflux–isothermal and isothermal–isoflux for the left and right walls of the channel and kept either at equal or at different temperatures. The governing equations are solved numerically by finite difference method with Southwell–Over–Relaxation technique for extended Darcy model and analytically using perturbation series method for Darcian model. The velocity and temperature fields are obtained for various porous parameter, inertia effect, product of Brinkman number and Grashof number and the ratio of Grashof number and Reynolds number for equal and different wall temperatures. Nusselt number at the walls is also determined for three types of thermal boundary conditions. The viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. The Darcy and inertial drag terms suppress the flow. It is found that analytical and numerical solutions agree very well for the Darcian model. An erratum to this article is available at .  相似文献   

13.
 Fluid flow at the interface of a porous medium and an open channel is the governing phenomenon in a number of processes of industrial importance. Traditionally, this has been modeled by applying the Brinkman’s modification of Darcy’s law to obtain the velocity profile in terms of an additional parameter known as the “apparent viscosity” or the “slip coefficient”. To test this ad hoc approach, a detailed experimental investigation of the flow was conducted using Laser Doppler Anemometry (LDA) in the close vicinity of the permeable boundary of a porous medium. The porous medium used in the experiments consisted of a network of continuous glass strands woven together in a random fashion. A Hele–Shaw cell was partially filled with a fibrous preform such that an open channel flow is coupled with the Darcy flow inside the preform through the permeable interface of the preform. The open channel portion of the Hele–Shaw cell also acts as an ideal porous medium of known in-plane permeability which is much higher than the permeability of the fibrous porous medium. A viscous fluid is injected at a constant flow rate through the above arrangement and a saturated and steady flow is established through the cell. Using LDA, steady state velocity profiles are accurately measured by traversing across the cell in the direction perpendicular to the flow. A series of experiments were conducted in which fluid viscosity, flow rate, solid volume fraction of the porous medium and depth of the Hele–Shaw cell were varied. For each and every case in which the conditions for Hele–Shaw approximation were valid, the depth of the boundary layer zone or the screening length inside the fibrous preform was found to be of the order of the channel depth. This is much larger as compared to the Brinkman’s prediction of the screening length which is of the order of √K, where K is the permeability of the fibrous porous medium. Based on this finding, we modified the boundary condition in the Brinkman’s solution and found that the velocity profile results compared well with the experimental data for the planar geometry and the fibrous preforms for volume fractions of 7%, 14% and 21% for Hele–Shaw cell depths of 1.6 and 3.175 mm. For a cell depth of 4.8 cm, in which the Hele–Shaw approximation was not valid, the boundary layer thickness or the screening length was found to be less than the mold or channel depth but was still much larger than the Brinkman’s prediction. Received: 10 May 1996 / Accepted: 26 August 1996  相似文献   

14.
An analytical study of viscous dissipation effect on the fully developed forced convection Couette flow through a parallel plate channel partially filled with porous medium is presented. A uniform heat flux is imposed at the moving plate while the fixed plate is insulated. In the fluid-only region the flow field is governed by Navier–Stokes equation while the Brinkman-extended Darcy law relationship is considered in the fully saturated porous medium. The interface conditions are formulated with an empirical constant β due to the stress jump boundary condition. Fluid properties are assumed to be constant and the longitudinal heat conduction is neglected. A closed-form solution for the velocity and temperature distributions and also the Nusselt number in the channel are obtained and the viscous dissipation effect on these profiles is briefly investigated.  相似文献   

15.
In this study, an integrated flow simulation and aeroacoustics prediction methodology is applied to testing a sound control technique using porous inserts in an open cavity. Large eddy simulation (LES) combined with a three-dimensional Ffowcs Williams–Hawkings (FW–H) acoustic analogy is employed to predict the flow field, the acoustic sources and the sound radiation. The Darcy pressure – velocity law is applied to conceptually mimic the effect of porous media placed on the cavity floor and/or rear wall. Consequently, flow in the cavity could locally move in or out through these porous walls, depending on the local pressure differences. LES with “standard” subgrid-scale models for compressible flow is carried out to simulate the flow field covering the sound source and near fields, and the fully three-dimensional FW–H acoustic analogy is used to predict the sound field. The numerical results show that applying the conceptual porous media on cavity floor and/or rear wall could decrease the pressure fluctuations in the cavity and the sound pressure level in the far field. The amplitudes of the dominant oscillations (Rossiter modes) are suppressed and their frequencies are slightly modified. The dominant sound source is the transverse dipole term, which is significantly reduced due to the porous walls. As a result, the sound pressure in the far field is also suppressed. The preliminary study reveals that using porous-inserts is a promising technology for flow and sound radiation control.  相似文献   

16.
This paper generalizes the analysis of four magnetohydrodynamic (MHD) flow problems of an Oldroyd-B fluid discussed by Asghar et al. [Int. J. Non-linear Mech. 40, 589–601 (2005)] into three directions: (i) to discuss the problems in a porous medium using modified Darcy’s law (ii) to see the influence of Hall current (iii) to determine the effect of rheological parameter of Burgers’ fluid. Analytical solutions of velocity distribution valid at large and small times are given in each problem. Comparison has been provided for Oldroyd-B and Burgers’ fluids through graphs. The physical interpretation is also included.  相似文献   

17.
 In this paper we present a mathematical analysis of heat and mass transfer phenomena in a visco–elastic fluid flow over an accelerating stretching sheet in the presence of heat source/sink, viscous dissipation and suction/blowing. Similarity transformations are used to convert highly non-linear partial differential equations into ordinary differential equations. Several closed form analytical solutions for non-dimensional temperature, concentration, heat flux, mass flux profiles are obtained in the form of confluent hypergeometric (Kummer's) functions for two different cases of the boundary conditions, namely, (i) wall with prescribed second order power law temperature and second order power law concentration (PST), and (ii) wall with prescribed second order power law heat flux and second order power law mass flux (PHF). The effect of various physical parameters like visco–elasticity, Eckert number, Prandtl number, heat source/sink, Schmidt number and suction/blowing parameter on temperature and concentration profiles are analysed. The effects of all these parameters on wall temperature gradient and wall concentration gradient are also discussed. Received on 23 March 2000 / Published online: 29 November 2001  相似文献   

18.
A general set of flow laws and associated variational formulations are constructed for small-deformation rate-independent problems in strain-gradient plasticity. The framework is based on the thermodynamically consistent theory due to Gurtin and Anand (J Mech Phys Solids 53:1624–1649, 2005), and includes as variables a set of microstresses which have both energetic and dissipative components. The flow law is of associative type. It is expressed as a normality law with respect to a convex but otherwise arbitrary yield function, or equivalently in terms of the corresponding dissipation function. Two cases studied are, first, an extension of the classical Hill-Mises or J 2 flow law and second, a form written as a linear sum of the magnitudes of the plastic strain and strain gradient. This latter form is motivated by work of Evans and Hutchinson (Acta Mater 57:1675–1688, 2009) and Nix and Gao (J Mech Phys Solids 46:411–425, 1998), who show that it leads to superior correspondence with experimental results, at least for particular classes of problems. The corresponding yield function is obtained by a duality argument. The variational problem is based on the flow rule expressed in terms of the dissipation function, and the problem is formulated as a variational inequality in the displacement, plastic strain, and hardening parameter. Dissipative components of the microstresses, which are indeterminate, are absent from the formulation. Existence and uniqueness of solutions are investigated for the generalized Hill-Mises and linear-sum dissipation functions, and for various combinations of defect energy. The conditions for well-posedness of the problem depend critically on the choice of dissipation function, and on the presence or otherwise of a defect energy in the plastic strain or plastic strain gradient, and of internal-variable hardening.  相似文献   

19.
The inviscid equations of motion for the flow at the downstream side of a curved shock are solved for the shock–normal derivatives. Combining them with the shock–parallel derivatives yields gradients and substantial derivatives. In general these consist of two terms, one proportional to the rate of removal of specific enthalpy by the reaction, and one proportional to the shock curvature. Results about the streamline curvature show that, for sufficiently fast exothermic reaction, no Crocco point exists. This leads to a stability argument for sinusoidally perturbed normal shocks that relates to the formation of the structure of a detonation wave. Application to the deflection–pressure map of a streamline emerging from a triple shock point leads to the conclusion that, for non–reacting flow, the curvature of the Mach stem and reflected shock must be zero at the triple point, if the incident shock is straight. The direction and magnitude of the gradient at the shock of any flow quantity may be written down using the results. The sonic line slope in reacting flow serves as an example. Extension of the results – derived in the first place for plane flow – to three dimensions is straightforward. Received 12 February 1997 / Accepted 10 June 1997  相似文献   

20.
The Kuropatenko model for a multicomponent medium whose components are polytropic gases is considered. It is assumed that, as x → ±∞, the multicomponent medium is in a homogeneous state with constant gas-dynamic parameters — velocity, pressure, and temperature. For the traveling wave flows, conditions similar to the Hugoniot conditions are obtained and used to uniquely determine the flow parameters for x → −∞ from the flow parameters x → +∞ and traveling wave velocity. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 39–47, July–August, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号