首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
应用三维激光粒子动态分析仪(PDA),对分级进风燃烧室内含颗粒的湍流反应流的气 固两相瞬时速度场进行了实验测量,同时对单相湍流反应流的瞬时速度场也进行了实验测 量. 得到了两种情况下燃烧室内气固两相和单相气体的平均轴向与切向速度、轴向与切向脉 动速度均方根值和轴向-切向脉动速度二阶关联量的分布.  相似文献   

2.
格栅湍流风场常用于研究来流风参数对结构风效应的影响规律与作用机理。本文对不同格栅湍流风场的风参数随横栅板起始高度、孔隙率、距离和栅板宽度的变化规律进行了研究,结果表明:横栅板起始高度为横栅板间距一半时,格栅湍流风场的均匀性较好。湍流积分尺度离散性较大,可采用一定范围内的湍流积分尺度的平均值衡量试验横断面湍流积分尺度的总体大小。随着距离增大,湍流强度呈指数衰减趋势,湍流积分尺度呈增大趋势;随着栅板宽度增大,湍流强度和湍流积分尺度均增大;基于试验结果提出了湍流强度和湍流积分尺度关于距离和栅板宽度的计算公式。根据风参数的变化规律,调试出了两组特定的格栅湍流风场,一组湍流强度接近,湍流积分尺度相差较大,反映了脉动风的涡旋结构不同;另一组湍流积分尺度接近,湍流强度相差较大,反映了脉动风的能量大小不同。上述研究结果为下一步研究风参数对高层建筑风效应的影响规律打下了基础。  相似文献   

3.
旋流燃烧室内湍流燃烧速度场的实验研究   总被引:5,自引:1,他引:5  
普勇  张健  周力行 《力学学报》2003,35(3):341-347
建立了采用分级进风方式的同轴射流旋流燃烧室实验装置,选用耐高温的氧化铝细粉作为示踪粒子,实现了用三维激光粒子动态分析仪(PDA)测量湍流旋流燃烧的热态瞬时速度场.在分级进风比率和旋流致不同的3组实验工况条件下,得到了气体时均轴向与切向速度、轴向与切向脉动速度均方根值和轴向—切向脉动速度二阶关联量的分布.  相似文献   

4.
采用欧拉-欧拉多相流模型,辅以RNG k-ε湍流模型对一简化的推流式曝气池进行了数值模拟,控制方程采用有限体积法离散,并采用PISO(Pressure-Implicit with Splitting of Operators)算法求解。通过模拟得到了不同曝气速度下曝气池特征断面的气相体积分数、气液两相速度的分布规律以及湍动能的变化情况,通过分析比较确定了最佳的曝气速度范围:当曝气速度范围为6.25m/s~7.813m/s时,简化的推流式曝气池内的气体分布均匀,池内的气体和液体混合充分,可为曝气池的合理运行提供参考。  相似文献   

5.
Richtmyer-Meshkov(R-M)不稳定性普遍存在于众多工程问题中,激波管实验是研究R-M失稳问题的主要手段.高精度的平面激光诱导荧光(planar laser-induced fluorescence,PLIF)技术具有分子量级的示踪能力,可获得界面气体浓度(摩尔分数)分布,为研究界面失稳混合问题提供了有力工具.在弱激波(Ma=1.25)冲击扩散型气柱界面实验中,采用PLIF技术对R-M失稳引起的SF6-Air界面混合问题进行了研究.通过改变椭圆形初始界面的长短轴比,得到了3种扩散型初始界面失稳演化过程中气体摩尔分数,观察到了斜压机制下界面的简单拉伸、二次不稳定性、挤压射流等现象.利用浓度分布进一步得到了界面的瞬时混合率,通过瞬时混合率、界面整体平均混合率以及混合率的概率密度分布,分析了界面在不同演化阶段的界面混合特征,初步讨论了界面失稳混合的机制.演化初期,界面在斜压涡的作用下发生拉伸卷曲,通过增大浓度梯度来促进界面的混合.当演化进一步发展,二次不稳定性出现后,界面通过小尺度对流的方式达到湍流混合状态,而浓度梯度驱使的分子间混合逐渐减弱.由浓度梯度引起的扩散与由二次不稳定性引起的对流存在着"竞争"关系,二者共同主导了界面的混合.  相似文献   

6.
基于大涡模拟方法,结合高阶混合格式,对高压重质的SF6球形气云在空气中爆炸进行了模拟。数值模拟表明,爆炸产生的激波经过气体分界面时分为透射激波以及反射稀疏波,透射激波导致气体分界面处Richtmyer-Meshkov失稳增强,从而加速了2种气体的混合,而反射的稀疏波经过汇聚,在球心处形成二次激波,在该强激波作用下,流场区域基本呈现湍流形态。  相似文献   

7.
在Fluent软件中应用RNG $k$-$\varepsilon$湍流模型及流体体积函数(VOF)对座便 器内部三维湍流流动进行了雷诺平均N-S方程的数值模拟,得到 了座便器内流场三维流动形态,研究了座便器虹吸管内流动规律,分析了虹吸管形状对流速 分布、压力分布及虹吸性能的影响,以三维湍流场的分析结果为依据,实现了座便器虹吸管 道的优化设计. 通过PIV测试数据验证了三维湍流数值模拟结果的准确性.  相似文献   

8.
本文总结了近60 年来分层流动中湍流特性研究的成果. 主要从两个方面进行了综述:(1) 分层流动中湍流场的演变和混合. 在这方面主要分析稳定分层对湍流混合和湍流结构的影响, 以及混合层内湍流结构的特性和混合层的演化规律. (2) 分层流动中湍流的扩散和输运. 动量和标量的逆梯度输运特性是分层湍流研究的一个重要方向;分析分层对湍流扩散的影响. 并指出了一些值得今后进一步研究的方向.  相似文献   

9.
可压缩自由剪切流混合转捩大涡模拟   总被引:3,自引:2,他引:1  
针对湍流气动光学效应与冲压发动机气体混合机理问题,开展了可压缩混合层流动空间模式大涡模拟和时间模式直接数值模拟研究.通过对流场(包含亚/亚混合、超/亚混合两种情况)失稳、转捩直至完全湍流的空间发展过程的研究表明,对流Mach数0.4状态下流场失稳以二维最不稳定扰动为主;非线性发展中,基频涡对并及展向涡撕裂主控流动转捩,流场发生混合转捩;转捩后脉动流场基本达到局部各向同性,此时,湍流Mach数低于0.3,流动压缩性可近似忽略.  相似文献   

10.
王涛  李平  柏劲松  汪兵  陶钢 《爆炸与冲击》2013,33(5):487-493
采用拉伸涡亚格子尺度应力模型对湍流输运中的亚格子作用项进行模式化处理,发展了适用于可压多介质黏性流动和湍流的大涡模拟方法和代码MVFT(multi-viscous flow and turbulence)。利用MVFT代码对低密度流体界面不稳定性及其诱发的湍流混合问题进行了数值模拟。详细分析了扰动界面的发展,流场中冲击波的传播、相互作用、湍流混合区边界的演化规律,以及流场瞬时密度和湍动能的分布和发展。数值模拟获得的界面演化图像和流场中波系结构与实验结果吻合较好。三维和二维模拟结果的比较显示,两者得到的扰动界面位置、波系及湍流混合区边界基本一致,只是后期的界面构型有所不同,这也正说明湍流具有强三维效应。  相似文献   

11.
The present work describes the experimental investigation of reacting wakes established through fuel injection and staged premixing with air in an axisymmetric double cavity arrangement, formed along three concentric disks, and stabilized in the downstream vortex region of the afterbody. The burner assembly is operated with a co-flow of swirling air, aerodynamically introduced upstream of the burner exit plane, to allow for the study of the interaction between the resulting partially premixed recirculating afterbody flames with the surrounding swirl. At low swirl the primary afterbody disk stabilizes the partially premixed annular jet in the downstream reacting wake formation region. As swirl increases, a system of two successive vortices emerges along the axis of the developing wake; the primary afterbody vortex is cooperating with an adjacent, swirl induced, central recirculation zone and this combination further promotes turbulent mixing in the hot wake.Complementary measurements of the counterpart isothermal turbulent velocity fields provided important information on the near wake aerodynamics under the interaction of the variable swirl and the double cavity produced annular jet stabilized by the afterbody. Under reacting conditions, measurements of turbulent velocities, temperatures and statistics together with an evaluation of the exhaust emissions were performed using LDV, thin digitally-compensated thermocouples and gas analyzers. A selected number of lean and ultra-lean flames were investigated by regulating the injected fuel and the air supply ratio, while the influence of the variation of the imposed swirl on wake development, flame characteristics and emission performance was documented for constant fuel injections. The differences and similarities between the present partially premixed stabilizer and other types of axisymmetric configurations are also highlighted and discussed.  相似文献   

12.
An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl intensity on the flow and combustion characteristics. First, stream lines and velocity distribution in the flow field were obtained using PIV (Particle Image Velocimetry) method in a model burner. In contrast with the axial flow without swirl, highly swirled air induced streamlines going along the burner tile, and its backward flow was generated by recirculation in the center zone of the flow field. In the combustion, the flame shape with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure was examined by measuring OH and CH radicals intensity and by calculating Damkohler number (Da) and turbulence Reynolds number (Re T ). It appeared that luminescence intensity decreased at higher swirl number due to the recirculated flue gas, and the flat flames were comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the flue gas widely contacted on the flame front, and decreased the flame temperature and emissions concentration as thermal NO. The homogeneous temperature field due to the widely flat flame was obtained, and the RMS in the high temperature region was rather lower at higher swirl number. Consequently, the stable flat flame with low NO concentration was achieved.  相似文献   

13.
Measurements of time-resolved velocity characteristics have been obtained with a laser-Doppler velocimeter in the vicinity of a model of an industrial oxy-fuel burner. The burner consists of a central axisymmetric jet surrounded by 16 circular jets, simulating the injection of oxygen in practical burners. The experiments were carried out for isothermal flows and quantify the effect of swirl for 0 ≤ S ≤ 0.9 on the mixing efficiency of the burner assembly. The results show that the present flow develops faster than related coaxial free jets with similar velocity ratios between central and peripheral air streams and, for example, for the nonswirling flow the rate of decay of the centreline velocity increases by a factor of 2. Swirl attenuates the three-dimensional structure typical of multijet flows although the peripheral jets limit the radial spreading of the swirling flow and give rise to increased values of mean shear strain and, therefore, to turbulent production. The existence of zones characterized by large turbulence anisotropy indicate the need to take account of the individual normal stresses in any proposed mathematical model to simulate the flow characteristics. Inspection of the terms in the conservation equation for the turbulent stresses quantify the extent to which interaction of normal stresses with normal strains influences the flow and suggests the likely combined magnitude of turbulent diffusion and dissipation.  相似文献   

14.
The objective of this work is twofold. Firstly, the effects of turbulence intensity variations on the turbulent droplet dispersion, vaporization and mixing for non-reacting sprays (with and without swirl) are pointed out. Secondly, the effects of the coupling of the turbulence modulation with external parameters, such as swirl intensity, on turbulent spray combustion are analyzed in configurations of engineering importance. This is achieved by using advanced models for turbulence, evaporation and turbulence modulation implemented into FASTEST-LAG3D-codes: (1) To highlight the influence of turbulence modulation on some spray properties, a thermodynamically consistent modulation model has been considered besides the standard assumption and the well known Crowe's model. For turbulent droplet dispersion, we rely on the Markov-sequence formulation. (2) In order to characterize phase transition processes ongoing on droplets surfaces, a non-equilibrium evaporation model shows better agreement with experiments in comparison with the quasi-equilibrium-based evaporation models often used. (3) The results of turbulence intensity variations reveal the existence of a limited range out of which the increase or decrease of the turbulence intensity affects no more the efficiency of the heat and mass transfer. A derived characteristic number, a vaporization Damkhöler number, possesses a critical value which separates two different behavior regimes with respect to the turbulence/droplet vaporization interactions. (4) Under reacting conditions, it is shown how the evaporation characteristics, mixing rate and combustion process are strongly influenced by swirl intensity and turbulence modulation. In particular, the turbulence modulation modifies the evaporation rate, which in turn influences the mixing and the species concentration distribution. In the case under investigation, it is demonstrated that this effect cannot be neglected for low swirl intensities (Sw.Nu. ≤ 1) in the region far from the nozzle, and close to the nozzle for high swirl number intensities. In providing these particular characteristics, a reliable control of the mixing of gaseous fuel and air in evaporating and reacting sprays, and a possible optimization of the mixing process can tentatively be achieved.  相似文献   

15.
The influence of mass-flow-rate ratio of inner to outer secondary air on gas–particle flow characteristics was determined in the near-burner region of a centrally fuel-rich swirl coal combustion burner. Velocity and particle volume flux profiles and normalized particle number concentrations were obtained. Peaks in tangential mean velocity and three-dimensional root-mean-square fluctuation velocities were found to decrease as the mass-flow-rate ratio increased. Moreover, the peaks in the mean axial velocities and particle volume flux near the wall increased, whereas those near the chamber axis decreased. Simultaneously, both recirculation zone and swirl number decreased as the mass-flow-rate ratio increased.  相似文献   

16.
Swirl-stabilised combustion is one of the most widely used techniques for flame stabilisation, uses ranging from gas turbine combustors to pulverised coal-fired power stations. In gas turbines, lean premixed systems are of especial importance, giving the ability to produce low NOx systems coupled with wide stability limits. The common element is the swirl burner, which depends on the generation of an aerodynamically formed central recirculation zone (CRZ) and which serves to recycle heat and active chemical species to the root of the flame as well as providing low-velocity regions where the flame speed can match the local flow velocity. Enhanced mixing in and around the CRZ is another beneficial feature. The structure of the CRZ and hence that of the associated flames, stabilisation and mixing processes have shown to be extremely complex, three-dimensional and time dependent. The characteristics of the CRZ depend very strongly on the level of swirl (swirl number), burner configuration, type of flow expansion, Reynolds number (i.e. flowrate) and equivalence ratio. Although numerical methods have had some success when compared to experimental results, the models still have difficulties at medium to high swirl levels, with complex geometries and varied equivalence ratios. This study thus focuses on experimental results obtained to characterise the CRZ formed under varied combustion conditions with different geometries and some variation of swirl number in a generic swirl burner. CRZ behaviour has similarities to the equivalent isothermal state, but is strongly dependent on equivalence ratio, with interesting effects occurring with a high-velocity fuel injector. Partial premixing and combustion cause more substantive changes to the CRZ than pure diffusive combustion.  相似文献   

17.
Measurements of velocity and temperature characteristics, together with the analysis of the process of flame extinction, are reported for a range of high-intensity flames stabilized on a model of an industrial oxyfuel burner installed in a divergent quarl. The burner consists of a central axisymmetric jet surrounded by 16 circular jets, simulating the injection of oxygen in practical burners. A laser-Doppler velocimeter was used to measure density-weighted velocity characteristics, and bare-wire thermocouples were used to measure near unweighted temperature characteristics. Experiments were carried out to improve knowledge of the flow in the near field of multijet burner heads, which is essential to design further modifications in their geometry and to predict their effects. Isothermal and combusting flows are studied; for the latter, the experiments quantify the effect of quarl geometry, fuel-to-air ratio, swirl number, and central-to-peripheral jet velocity ration on the flame characteristics.

The results show that flame stabilization occurs in the vicinity of the quarl and is affected by its geometry owing to changes in the rate of entrainment of cold air. Increasing the swirl level and decreasing the peripheral airflow improves flame stability by promoting the mixing of fuel and air along the annular stabilization region. Turbulence measurements show common features with and without combustion and suggest the absence of large-scale mixing in the present flames. Although the laminar flamelet concept may represent most of the features of the flames investigated, the local quenching of burning flamelets is shown to preclude the internal ignition of flame gases in a way that influences the process of flame stabilization.  相似文献   


18.
Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW.The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions.Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence–chemistry interaction.  相似文献   

19.
Large-scale vortical structures and associated mixing in methane/air swirling coaxial jets are actively controlled by manipulating the outer shear layer of the outer swirling coaxial jet with miniature flap actuators. In order to investigate the control mechanisms, stereoscopic particle image verocimetry (stereo-PIV) and plannar laser-induced fluorescence (PLIF) techniques are employed. It is found that intense vortex rings are produced in the outer shear layer in phase with the periodic flap motion regardless of the swirl number examined. The vortical structures in the inner shear layer, however, are strongly dependent on the swirl rate. This is because the central methane jet is accelerated by the negative axial pressure gradient, of which strength is determined by the swirl. As a result, the inner vortex formation is significantly suppressed at a higher swirl rate. On the other hand, at a relatively low swirl rate, the inner vortices are shed continuously and the methane jet is pinched off. This particular mode promotes the mixing of methane and air, so that the flammable mixture can be formed at an earlier stage of the jet flow development. In addition, the evolution of secondary streamwise vortices is prompted by the combination of the periodic vortex ring shedding and the swirl. They also contribute to the mixing enhancement in the downstream region.  相似文献   

20.
Computational fluid dynamics is used to simulate a mixing process in a rapidly mixed tubular flame burner (RTFB). The effect of several parameters such as the swirl number (S), the velocity ratio (α) and the injector arrangements (N1 and N2) is investigated. The mixing process is identified for a variation of the swirl number (from 0.23 to 5.44) via the Lagrangian discrete phase model. The validation of the numerical results is performed by confronting the predicted particle trajectory, the tangential velocity and the mixing layer thickness results to the experimental data. By means of the validated model, a mathematical correlation between the mixing coefficient and the different geometric parameters characterizing the RTFB is established, enabling the prediction of the mixing time for any RTFB design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号