首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
提出了用于高强度材料的改进的SHPB实验方法添加垫块法,运用数值模拟方法,利用有限元程序LS-DYNA3D分析了添加垫块实验方法的合理性和可行性。根据一维应力波理论,给出了数据处理的修正方法。作为应用实例,采用改进的实验方法对高强度的Al2O3陶瓷材料的动态力学性能进行了研究,得到了比常规方法较高的应变率及应力应变范围的动态应力应变曲线,表明Al2O3陶瓷为应变率相关的非线性弹脆性材料。结果表明,添加垫块实验方法可有效地防止实验中压杆端面的变形,提高试件的应力应变及应变率水平。添加垫块实验方法为在SHPB装置上实现高强度材料的动态实验提供了一种方便实用的途径。  相似文献   

2.
3.
以SHPB实验技术中一维假定和应力均匀假定为基础, 针对多孔硬脆性材料 的力学特性, 分析了利用传统SHPB装置在实验研究中存在的问题, 并从入射杆和透射杆的选 取、传感器的选取、试件参数的确定、入射波形的确定和数据处理方法的选取等方面总结了 克服这些问题的技术和方法.  相似文献   

4.
SHPB技术虽然能方便地得出材料的动态应力应变关系,但却不能直观地揭示材料在经受冲击荷载时的变形特征,而这恰恰是泡沫金属力学性能研究的重要方面.为此,本文设计了一套SHPB-高速摄影机系统,借此系统对SHPB实验中的泡沫铝试件进行了实时的变形跟踪拍摄,然后应用图像处理软件对泡沫铝试件的动态变形进行分析并提取了位移信息,...  相似文献   

5.
R. Chen  F. Dai  J. Qin  F. Lu 《Experimental Mechanics》2013,53(7):1153-1159
An indirect tensile testing method is proposed to measure the full dynamic tensile stress-strain curve of low strength brittle solids. In this method, the flattened-Brazilian disc (FBD) sample is loaded by modified split Hopkinson pressure bars (SHPB) system. Low amplitude dynamic forces were measured with a pair of piezoelectric force transducers embedded in the incident bar and the transmitted bar. The evolution of tensile stress at the center of the disc sample was determined through finite element analyses using the measured stress in SHPB as inputs. In a traditional Brazilian test, a strain gauge is mounted at the center of the specimen to measure the tensile strain, which is difficult to apply for low strength brittle materials. Thus, two types of non-contact methods, the Digital Image Correlation (DIC) technique and the Laser Gap Gauge (LGG), were used to measure the strain. The DIC method was used to monitor the displacement and the strain map of the specimen during the test, from which the strain at the center of the specimen can be obtained. The accuracy of the DIC results was assessed, and the displacement and strain uncertainties of our system were 0.003 mm and 0.003, respectively. LGG was used to monitor the expansion of the disc perpendicular to the loading axis, from which the average tensile strain is deduced. The numerical simulation revealed that the tensile strain at the center of the specimen is proportional to the average tensile strain and that the ratio is not sensitive to the material elastic parameters. The strain measured through LGG was compared with that measured by the DIC method using photos captured with a synchronized high-speed camera. The result of the LGG method was 20 % smaller than that of the DIC process. However, the latter was limited by the number of frames of the high-speed camera. The feasibility of this methodology was demonstrated using a polymer-bonded explosive (PBX).  相似文献   

6.
The material testing technique of Torsional Split Hopkinson Bar (TSHB) is investigated in this paper. It can solve nearly all the problems of Split Hopkinson Pressure Bar (SHPB). Furthermore, accurate experimental results can be obtained in large deformation condition. In this paper some dynamic stress-strain curves of some engineering materials are also given which are obtained from a TSHB apparatus made by ourselves.Projects Supported by the Science Fund of the Chinese Academia Sinica.  相似文献   

7.
利用普通SHPB实验系统、双试件SHPB实验系统,对一特种钢材进行了不同应变率历史的动态压缩实验,获得了不同应变率历史所对应的应力应变曲线。通过量化平均应变率相同的情况下不同应变率历史所对应的应力应变曲线的差别,以及量化应变率历史的恒定程度,初步分析了应变率历史对应力应变曲线的影响。研究结果表明:特别是在较高平均应变率下,应变率历史对试件材料的应力应变曲线有明显的影响,在材料动态本构关系研究中应当考虑应变率历史的影响。  相似文献   

8.
大直径SHPB实验中的高温加载技术及其应用   总被引:1,自引:0,他引:1  
为研究材料的高温动态力学行为,提出一套由自主设计的温控系统和100 mm SHPB装置组成的高温SHPB实验系统,采用ANSYS软件对界面热传导及其对实验结果的影响进行了计算分析,论证了该实验技术的可靠性,并对混凝土的高温动态力学性能进行了研究。结果表明:在大直径合金钢材质SHPB装置上对混凝土等热惰性材料进行高温冲击实验,冷接触时间临界值为1.00 s,本文中提出的高温加载技术可将冷接触时间控制在0.50 s以内,实验技术可靠;同一加载速率下,随着温度从常温升到1 000 ℃,高温混凝土的动态应力应变曲线呈现出塑性变化趋势,动态抗压强度先提高后降低,动态峰值应变则不断增大。  相似文献   

9.
Pulse-shaping techniques are developed for both the loading and unloading paths of a split Hopkinson pressure bar (SHPB) experiment to obtain valid dynamic stress-strain loops for engineering materials. Front and rear pulse-shapers, in association with a momentum trap, are used to precisely control the profiles of the loading and unloading portions of the incident pulse. The modifications, ensure that the specimen deforms at the same constant strain rate under dynamic stress equilibrium during both loading and unloading stages of an experiment so that dynamic stress-strain loops can be accurately determined. Dynamic stress-strain loops with a constant strain rate for a nickel-titanium shape memory alloy and polymethyl methacrylate are determined using the modified SHPB. The modified momentum trap prevents repeated loading on a specimen without affecting the amplitude of the desired loading pulse and without damaging the bar at high stress levels.  相似文献   

10.
The split Hopkinson pressure bar (SHPB) technique is analyzed during the initial stages of loading by means of axisymmetric finite element simulations of dynamic compression tests. Limiting strains as functions of the test parameters such as the specimen diameterd and heighth were found to ensure a one-dimensional stress state and axial stress homogeneity in specimens of elastic-perfectly plastic material. The one-dimensional stress state is necessary and sufficient for accurate test results for flat specimens (h/d≤0.5) and nonflat specimens, respectively, with diameters up to half of the bar diameter. Only very small values of the Coulomb friction constraint (μ≈0.01) seem to be acceptable. The significance of the determined limiting conditions to the more practical case of a rate dependent material is investigated using an elastic-viscoplastic material for the specimen. The stress and strain rate reconstructed from the calculated bar signals (according to the SHPB analysis) are compared with stresses and strain rates averaged over the cross section of the specimen. Well-known inertia corrections improve the results of the SHPB procedure, but errors remain for small strains and highly time dependent strain rates.  相似文献   

11.
为了研究混凝土HJC本构模型的参数取值及其参数对混凝土动态性能的影响,本文基于HJC模型原始参数,运用有限元软件ANSYS/LS-DYNA对混凝土SHPB试验进行了数值模拟,结果显示数值计算结果与试验结果存在一定的差异。据此根据模型中参数的物理意义确定出可能影响混凝土动态性能的关键参数,通过保持其他参数不变、改变关键参数的方法对混凝土SHPB试验进行数值分析,得到了各关键参数对混凝土动态性能的影响规律,并基于该分析结果对HJC模型的原始参数进行了修正。数值模拟结果表明,采用本文修正参数的计算结果与试验结果吻合良好,能较准确地反映混凝土的动态性能。  相似文献   

12.
A quartz-crystal-embedded split Hopkinson pressure bar for soft materials   总被引:7,自引:0,他引:7  
A dynamic experimental technique that is three orders of magnitude as sensitive in stress measurement as a conventional split Hopkinson pressure bar (SHPB) has been developed. Experimental results show that this new method is effective and reliable for determining the dynamic compressive stress-strain responses of materials with low mechanical impedance and low compressive strengths, such as elastomeric materials and foams at high strain rates. The technique is based on a conventional SHPB. Instead of a surface strain gage mounted on the transmission bar, a piezoelectric force transducer was embedded in the middle of the transmission bar of a high-strength aluminum alloy to directly measure the weakly transmitted force profile from a soft specimen. In addition, a pulse-shape technique was used for increasing the rise time of the incident pulse to ensure stress equilibrium and homogeneous deformation in the low-impedance and low-strength specimen.  相似文献   

13.
朱耀  庞宝君  盖秉政 《实验力学》2009,24(5):433-438
针对杆杆型动态拉伸试验系统设计了一种新型的楔形卡口试件装卡方式.利用ANSYS/LS-DYNA软件,建立采用该新型试件装卡方式的直接式杆杆动态拉伸系统的三维有限元模型,并进行数值仿真试验.得到的波形与SHB(Split Hopkinson Bar)试验典型波形相符合,得到的动态应力应变曲线与输入材料模型曲线趋势是一致的.利用这种装卡方式对一种2024铝合金进行动态拉伸试验,得到的动态拉伸应力应变曲线与利用SHPB试验得到的动态压缩曲线基本一致,证明这种新型试件装卡方式是有效的.  相似文献   

14.
The so-called incident, reflected and transmitted strain histories are typically recorded during standard Split Hopkinson Pressure Bar (SHPB) experiments. Subsequently, the stress-strain curve for the specimen material is determined based on these recordings. Unless wave deconvolution techniques are employed, the reliable measurement of the reflected wave requires an input bar which is at least twice as long as the striker bar (of equal impedance). The present brief technical note elucidates the advantages of a simple alternative configuration which has only been seldom used in the past. Based on the assumption of quasi-static equilibrium at the specimen level, we present a modification of Kolsky’s formulas such that the stress-strain curve for the specimen material can be obtained from the measurement of the incident and transmitted strain histories only. As a result, the measurement of the reflected wave may be omitted and a much shorter input bar can be chosen. Conversely, a much longer striker bar may be used for a given input bar length, thereby increasing the valid duration of standard SHPB experiments by up to 100 % through the use of the modified Kolky formulas. An example experiment is shown where the duration of valid measurements has been increased by more than 70 %.  相似文献   

15.
多孔材料是一种优异的吸能缓冲材料,但由于其变形模式的非单一性以及动态应力应变曲线的难获取性,其吸能行为对相对密度和冲击速度的依赖性关系还并不完全明朗。本文基于不需要提前作本构假定的波传播法,开展了多孔材料的吸能行为研究。采用多孔材料的细观有限元模型进行Taylor冲击虚拟实验,获取全场质点速度时程曲线,结合Lagrange分析法得到多孔材料的局部应力应变信息,进而探讨了动态吸能性能对材料相对密度和冲击速度的依赖性。研究结果表明多孔材料的吸能行为可依据变形模式分为三个阶段。在冲击模式下,多孔材料单位体积吸能与相对密度成线性增加关系,此时惯性起主导作用;在过渡模式下,惯性的主导作用减弱,单位体积吸能量的增加速率随相对密度的增加而减弱;在准静态模式下,多孔材料只能发生微小的变形,其吸能很少。本文进一步获得了区别于多孔材料准静态应力-应变曲线的动态应力-应变状态曲线,并考察了其与相对密度之间的关系。结果表明:随着相对密度的增加,多孔材料的动态压实应变将变小,而动态塑性平台应力将提高。  相似文献   

16.
运用Holmquist-Johnson-Cook (HJC) 本构模型对混凝土的SHPB实验进行了数值模拟。解决了罚函数算法中罚因子合理数值的选取问题。利用模拟结果按SHPB两波法重构了试样的应力应变曲线。分析了混凝土材料的SHPB实验得到应力应变曲线的有效段范围和各段的力学规律。通过比较实际混凝土材料SHPB实验和数值模拟得到的应力应变曲线,发现两者体现的力学行为很相似,即HJC模型是描述该类材料的一种合理本构模型。模拟了试样不同平行度公差下的SHPB实验,发现在一定应变率范围内其影响程度远大于试样应力(应变)不均匀性。  相似文献   

17.
We describe an experimental technique to study the dynamic behavior of complex soft materials, based on high-speed microscopic imaging and direct measurements of dynamic forces and deformations. The setup includes high sensitivity dynamic displacement measurements based on geometric moiré interferometry and high-speed imaging for in-situ, full-field visualization of the complex micro-scale dynamic deformations. The method allows extracting dynamic stress-strain profiles both from the moiré interferometry and from the high-speed microscopic imaging. We discuss the advantages of using these two complementing components concurrently. We use this technique to study the dynamic response of vertically aligned carbon nanotube foams subjected to impact loadings at variable deformation rates. The same technique can be used to study other micro-structured materials and complex hierarchical structures.  相似文献   

18.
由于微小型试件动态力学性能研究的重要性与测试的困难性,以及高应变率动态试验研究的需要,研制了基于磁阻式多级电磁发射的微型霍普金森压杆(mini-SHPB)装置。该装置由新型微型霍普金森压杆系统与磁阻式多级电磁发射系统组成。利用电磁脉冲发射原理,巧妙地设计了简单易行的磁阻式多级线圈发射系统,为微型霍普金森压杆系统的撞击杆提供驱动力。文中详细描述了该系统的各部分组成和原理,整个系统简单紧凑。通过应变率不敏感材料2024铝合金的动态压缩试验验证了该装置的可靠性。  相似文献   

19.
谢中秋  张蓬蓬 《实验力学》2013,28(2):220-226
利用INSTRON万能试验机和分离式Hopkinson压杆(SHPB)对PMMA试件在较宽应变率范围内进行了单轴压缩实验,研究加载应变率对PMMA材料力学性能的影响.利用扫描电子显微镜对回收的试样进行了显微观察,重点分析不同加载应变率下PMMA的微观损伤破坏模式.结果表明:随着应变率的增大,PMMA的流动应力显著地增加,且冲击加载条件下,峰值应力的应变率敏感性明显高于准静态;在准静态加载条件下,PMMA试样呈现明显的延性破坏特征,在动态加载条件下则表现为脆性破坏.最后,对PMMA材料的ZWT粘弹性本构模型参数进行了拟合,拟合结果与实验结果吻合较好,表明该本构模型能够较好地描述较宽应变率范围内PMMA材料的应力应变关系.  相似文献   

20.
Freestanding MEMS structures made of two long connected beams from different materials are fabricated and released in order to extract the stress-strain properties of thin films. The first material, named actuator, contains a high internal tensile stress component and, when released, pulls on the other beam. The strain in the beams is calculated based on the measurement of the displacement with respect to the reference configuration using scanning electron microscopy. The stress is estimated using two different methods. The first method, already reported, is based on the displacement of the actuator and the knowledge of its internal stress. The method which constitutes the novelty of the present study is based on the dynamic analysis of the multi-beam structures, and the determination of the stress value that corresponds to the measured resonance frequencies. The dynamic analysis is performed via two different methods: (i) the modified Rayleigh–Ritz technique and (ii) the Euler–Bernoulli beam dynamics. Results are provided for palladium thin films which deform plastically and for monocrystalline silicon thin films, exhibiting a purely elastic behavior. The results show the higher accuracy of the dynamic measurements for the estimation of the stress compared to the static method. The dynamic measurements also show that the Rayleigh–Ritz technique tends to give a higher bound for the resonance frequencies compared to the Euler–Bernoulli technique. This dynamic method extends the potential of this on-chip material testing technique which can also be adapted to stress controlled sensors applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号