首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Aerodynamic characteristics of various geometries are predicted using a finite element formulation coupled with several numerical techniques to ensure stability and accuracy of the method. First, an edge‐based error estimator and anisotropic mesh adaptation are used to detect automatically all flow features under the constraint of a fixed number of elements, thus controlling the computational cost. A variational multiscale‐stabilized finite element method is used to solve the incompressible Navier‐Stokes equations. Finally, the Spalart‐Allmaras turbulence model is solved using the streamline upwind Petrov‐Galerkin method. This paper is meant to show that the combination of anisotropic unsteady mesh adaptation with stabilized finite element methods provides an adequate framework for solving turbulent flows at high Reynolds numbers. The proposed method was validated on several test cases by confrontation with literature of both numerical and experimental results, in terms of accuracy on the prediction of the drag and lift coefficients as well as their evolution in time for unsteady cases.  相似文献   

2.
This paper presents a mesh adaptation procedure linked to a finite volume solver, the goal of which is to increase the precision of the numerical simulation of a wing tip vortex flow. The adaptation scheme is applied to hexahedron meshes and hybrid meshes made up of tetrahedrons and prisms. To evaluate the ability of each type of element to capture the physics of a tip vortex, a specific test case is studied and results obtained numerically from this test case are compared with experimental results. The error estimator of the adaptation scheme is derived from a solution scalar variable. It is shown that the element anisotropy as well as the adaptation algorithms used have an impact on the precision of the solution. Adaptation of hexahedrons allows a better capture of the tip vortex far from the vortex root, even though the adaptation of those hexahedrons barely changes the number of nodes used to achieve a specified precision, contrary to the adaptation of hybrid meshes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the use of an a posteriori error estimator to control anisotropic mesh adaptation for computing inviscid compressible flows. The a posteriori error estimator and the coupling strategy with an anisotropic remesher are first introduced. The mesh adaptation is controlled by a single‐parameter tolerance (TOL) in regions where the solution is regular, whereas a condition on the minimal element size hmin is enforced across solution discontinuities. This hmin condition is justified on the basis of an asymptotic analysis. The efficiency of the approach is tested with a supersonic flow over an aircraft. The evolution of a mesh adaptation/flow solution loop is shown, together with the influence of the parameters TOL and hmin. We verify numerically that the effect of varying hmin is concordant with the conclusions of the asymptotic analysis, giving hints on the selection of hmin with respect to TOL. Finally, we check that the results obtained with the a posteriori error estimator are at least as accurate as those obtained with anisotropic a priori error estimators. All the results presented can be obtained using a standard desktop computer, showing the efficiency of these adaptative methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we exploit the possibility to devise discontinuous Galerkin discretizations over polytopic grids to perform grid adaptation strategies on the basis of agglomeration coarsening of a fine grid obtained via standard unstructured mesh generators. The adaptive agglomeration process is here driven by an adjoint‐based error estimator. We investigate several strategies for converting the error field estimated solving the adjoint problem into an agglomeration factor field that is an indication of the number of elements of the fine grid that should be clustered together to form an agglomerated element. As a result the size of agglomerated elements is optimized for the achievement of the best accuracy for given grid size with respect to the target quantities. To demonstrate the potential of this strategy we consider problem‐specific outputs of interest typical of aerodynamics, eg, the lift and drag coefficients in the context of inviscid and viscous flows test cases.  相似文献   

5.
A p‐adaptive hybridizable discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high‐order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, whereas the particular choice of the numerical fluxes opens the path to a superconvergent postprocessed solution. This superconvergent postprocessed solution is used to construct a simple and inexpensive error estimator. The error estimator is employed to obtain solutions with the prescribed accuracy in the area (or areas) of interest and also drives a proposed iterative mesh adaptation procedure. The proposed method is applied to a nonhomogeneous scattering problem in an unbounded domain. This is a challenging problem because, on the one hand, for high frequencies, numerical difficulties are an important issue because of the loss of the ellipticity and the oscillatory behavior of the solution. And on the other hand, it is applied to real harbor agitation problems. That is, the mild slope equation in frequency domain (Helmholtz equation with nonconstant coefficients) is solved on real geometries with the corresponding perfectly matched layer to damp the diffracted waves. The performance of the method is studied on two practical examples. The adaptive hybridizable discontinuous Galerkin method exhibits better efficiency compared with a high‐order continuous Galerkin method using static condensation of the interior nodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
周帅  肖周芳  付琳  汪丁顺 《力学学报》2022,54(6):1732-1740
网格自适应技术和高阶精度数值方法是提升计算流体力学复杂问题适应能力的有效技术途径. 将这两项技术结合需要解决一系列技术难题, 其中之一是高阶精度流场插值. 针对高阶精度自适应流动计算, 提出一类高精度流场插值方法, 实现将前一迭代步网格中流场数值解插值到当前迭代步网格中, 以延续前一迭代步中的计算状态. 为实现流场插值过程中物理量守恒, 该方法先计算新旧网格的重叠区域, 然后将物理量从重叠区域的旧网格中转移到新网格中. 为满足高阶精度要求, 先采用k-exact最小二乘方法对旧网格上的数值解进行重构, 获得描述物理量分布的高阶多项式, 随后采用高阶精度高斯数值积分实现物理量精确地转移到新网格单元上. 最后, 通过一个具有精确解的数值算例和一个高阶精度自适应流动计算算例验证了本文算法的有效性. 第一个算例结果表明当网格规模固定不变时, 插值精度阶数越高, 插值误差越小; 第二个算例显示本文方法可以有效缩短高精度自适应流动计算的迭代收敛时间.   相似文献   

7.
This paper presents a general strategy for designing adaptive space–time finite element discretizations of the nonstationary Navier–Stokes equations. The underlying framework is that of the dual weighted residual method for goal‐oriented a posteriori error estimation and automatic mesh adaptation. In this approach, the error in the approximation of certain quantities of physical interest, such as the drag coefficient, is estimated in terms of local residuals of the computed solution multiplied by sensitivity factors, which are obtained by numerically solving an associated dual problem. In the resulting local error indicators, the effects of spatial and temporal discretization are separated, which allows for the simultaneous adjustment of time step and spatial mesh size. The efficiency of the proposed method for the construction of economical meshes and the quantitative assessment of the error is illustrated by several test examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
We present an efficient finite element method for computing the engineering quantities of interest that are linear functionals of displacement in elasticity based on a posteriori error estimate. The accuracy of quantities is greatly improved by adding the approximate cross inner product of errors in the primal and dual problems, which is calculated with an inexpensive gradient recovery type error estimate, to the quantities obtained from the finite element solution. With less CPU time, the accuracy of the improved quantities obtained with the proposed method on the coarse finite element mesh is similar to that of the quantities obtained from the finite element solutions on the finer mesh. Three quantities related to the local displacement, local stress and stress intensity factor are computed with the proposed method to verify its efficiency.  相似文献   

9.
在均匀网格上求解对流占优问题时,往往会产生数值震荡现象,因此需要局部加密网格来提高解的精度。针对对流占优问题,设计了一种新的自适应网格细化算法。该方法采用流线迎风SUPG(Petrov-Galerkin)格式求解对流占优问题,定义了网格尺寸并通过后验误差估计子修正来指导自适应网格细化,以泡泡型局部网格生成算法BLMG为网格生成器,通过模拟泡泡在区域中的运动得到了高质量的点集。与其他自适应网格细化方法相比,该方法可在同一框架内实现网格的细化和粗化,同时在所有细化层得到了高质量的网格。数值算例结果表明,该方法在求解对流占优问题时具有更高的数值精度和更好的收敛性。  相似文献   

10.
Highly nonlinear, turbulent, dynamic, fluid-structure interaction problems characterized by large structural displacements and deformations, as well as self-contact and topological changes, are encountered in many applications. For such problems, the Eulerian computational framework, which is often equipped with an embedded (or immersed) boundary method for computational fluid dynamics, is often the most appropriate framework. In many circumstances, it requires the computation of the time-dependent distance from each active mesh vertex of the embedding mesh to the nearest embedded discrete surface. Such circumstances include, for example, modeling turbulence using the Spalart-Allmaras or detached eddy simulation turbulence models and performing adaptive mesh refinement in order to track the boundary layer. Evaluating at each time step the distance to the wall is computationally prohibitive, particularly in the context of explicit-explicit fluid-structure time-integration schemes. Hence, this paper presents two complementary approaches for reducing this computational cost. The first one recognizes that many quantities depending on the wall distance are relatively insensitive to its inaccurate evaluation in the far field. Therefore, it simplifies a state-of-the-art algorithm for computing the wall distance accordingly. The second approach relies on an effective wall distance error estimator to update the evaluation of the wall distance function only when otherwise, a quantity of interest that depends on it would become tainted by an unacceptable level of error. The potential of combining both approaches for dramatically accelerating the computation of the wall distance is demonstrated with the Eulerian simulation of the inflation of a disk-gap-band parachute system in a supersonic airstream.  相似文献   

11.
The idea of hp‐adaptation, which has originally been developed for compact schemes (such as finite element methods), suggests an adaptation scheme using a mixture of mesh refinement and order enrichment based on the smoothness of the solution to obtain an accurate solution efficiently. In this paper, we develop an hp‐adaptation framework for unstructured finite volume methods using residual‐based and adjoint‐based error indicators. For the residual‐based error indicator, we use a higher‐order discrete operator to estimate the truncation error, whereas this estimate is weighted by the solution of the discrete adjoint problem for an output of interest to form the adaptation indicator for adjoint‐based adaptations. We perform our adaptation by local subdivision of cells with nonconforming interfaces allowed and local reconstruction of higher‐order polynomials for solution approximations. We present our results for two‐dimensional compressible flow problems including subsonic inviscid, transonic inviscid, and subsonic laminar flow around the NACA 0012 airfoil and also turbulent flow over a flat plate. Our numerical results suggest the efficiency and accuracy advantages of adjoint‐based hp‐adaptations over uniform refinement and also over residual‐based adaptation for flows with and without singularities.  相似文献   

12.
This paper presents an anisotropic adaptive finite element method (FEM) to solve the governing equations of steady magnetohydrodynamic (MHD) duct flow. A residual error estimator is presented for the standard FEM, and two-sided bounds on the error independent of the aspect ratio of meshes are provided. Based on the Zienkiewicz-Zhu estimates, a computable anisotropic error indicator and an implement anisotropic adaptive refinement for the MHD problem are derived at different values of the Hartmann number. The most distinguishing feature of the method is that the layer information from some directions is captured well such that the number of mesh vertices is dramatically reduced for a given level of accuracy. Thus, this approach is more suitable for approximating the layer problem at high Hartmann numbers. Numerical results show efficiency of the algorithm.  相似文献   

13.
Most indicators used for automatic grid refinement are suboptimal, in the sense that they do not really minimize the global solution error. This paper concerns with a new indicator, related to the sensitivity map of global stability problems, suitable for an optimal grid refinement that minimizes the global solution error. The new criterion is derived from the properties of the adjoint operator and provides a map of the sensitivity of the global error (or its estimate) to a local mesh refinement. Examples are presented for both a scalar partial differential equation and for the system of Navier–Stokes equations. In the last case, we also present a grid-adaptation algorithm based on the new estimator and on the \(FreeFem++\) software that improves the accuracy of the solution of almost two order of magnitude by redistributing the nodes of the initial computational mesh.  相似文献   

14.
改进的Z~2应力恢复过程与h型自适应有限元分析   总被引:1,自引:0,他引:1  
建议了一种较为精确的边界应力求解方法,并用于改进Zienkiewicz-Zhu(Z2)应力恢复过程。改进过程增加的计算量不大,但可有效地改善后验误差估计精度。h型自适应有限元分析结果表明,改进过程更有利于最优网格寻求工作  相似文献   

15.
We present a robust and efficient target‐based mesh adaptation methodology, building on hybridized discontinuous Galerkin schemes for (nonlinear) convection–diffusion problems, including the compressible Euler and Navier–Stokes equations. The hybridization of finite element discretizations has the main advantage that the resulting set of algebraic equations has globally coupled degrees of freedom (DOFs) only on the skeleton of the computational mesh. Consequently, solving for these DOFs involves the solution of a potentially much smaller system. This not only reduces storage requirements but also allows for a faster solution with iterative solvers. The mesh adaptation is driven by an error estimate obtained via a discrete adjoint approach. Furthermore, the computed target functional can be corrected with this error estimate to obtain an even more accurate value. The aim of this paper is twofold: Firstly, to show the superiority of adjoint‐based mesh adaptation over uniform and residual‐based mesh refinement and secondly, to investigate the efficiency of the global error estimate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this work an h-adaptive Modified Element-Free Galerkin (MEFG) method is investigated. The proposed error estimator is based on a recovery by equilibrium of nodal patches where a recovered stress field is obtained by a moving least square approximation. The procedure generates a smooth recovered stress field that is not only more accurate then the approximate solution but also free of spurious oscillations, normally seen in EFG methods at regions with high gradient stresses or discontinuities.The MEFG method combines conventional EFG with extended partition of unity finite element (EPUFE) methods in order to create global shape functions that allow a direct imposition of the essential boundary conditions.The re-meshing of the integration mesh is based on the homogeneous error distribution criterion and upon a given prescribed admissible error. Some examples are presented, considering a plane stress assumption, which shows the performance of the proposed methodology.  相似文献   

17.
提出了一种以栅格法为基本方法,基于几何特征和物理场量双重自适应的六面体网格再生成方法。首先,依据旧网格的表面曲率和几何特征,采用基于栅格法的几何自适应网格再生成方法,生成密度受控的基础网格;然后,将旧网格的物理场量传递到基础网格中;最后,采用有限元误差估计方法对新网格单元的计算误差进行估计,对误差较大的单元进行加密,减...  相似文献   

18.
Recently, we developed an explicit a posteriori error estimator especially suited for fluid dynamics problems solved with a stabilized method. The technology is based upon the theory that inspired stabilized methods, namely, the variational multiscale theory. The salient features of the formulation are that it can be readily implemented in existing codes, it is a very economical procedure, and it yields very accurate local error estimates uniformly from the diffusive to the advective regime. In this work, the variational multiscale error estimator is applied to develop adaptive strategies for the advection–diffusion‐reaction equation. The performance of L1 and L2 local error norms combined with three strategies to adapt the mesh is investigated. Emphasis is placed on flows with sharp boundary and interior layers but also attention is given to diffusion‐dominated flows. Computational results show that the method generates meshes with a smooth transition of the element size, which capture all the flow features. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Two related topics are addressed in this article. The first part of the article proves that, for a certain admissible class of problems in linear elasticity, the hypersingular boundary contour method (HBCM) can be collocated at all boundary points on the surface of a three-dimensional (3-D) body, including those on boundary contours, edges and corners, because the HBCM-shape-functions satisfy, a priori, all the smoothness requirements for collocation at these points. In contrast, the hypersingular boundary element method needs, in general, relaxation of some of these smoothness requirements for its shape functions, even for collocation at regular points that lie on the boundaries of boundary elements.A hypersingular residual, obtained from the standard and hypersingular boundary integral equations (HBIEs), has been recently proposed as a local error estimator for a boundary element, for the boundary integral equation. The second part in the present article is concerned with a definition of an analogous local error estimator for the boundary contour method, for 3-D linear elasticity. This error estimator is then used to drive an h-adaptive meshing procedure. Numerical results are presented to demonstrate adaptive meshing for selected example problems.  相似文献   

20.
Moving particle semi‐implicit (MPS) method is one of the particle methods, which can be used to analyze incompressible free surface flow without surface tracking by a mesh or a scalar quantity. However, MPS causes unphysical numerical oscillation of pressure with high frequencies. We proposed a new formulation for the source term of Poisson equation of pressure. The proposed source term consists of three parts, one main part and two error‐compensating parts. With proper selection of the coefficients for the error‐compensating parts, we can suppress the unphysical pressure oscillation. Smoother pressure distributions are obtained in hydrostatic pressure and dam break problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号