首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Understanding of the occurrence of the wave breaking, the process of the wave breaking and evolution of waves after they break in deep water is crucial to simulate the growth of wind wave in ocean. In this study, deep-water breaking waves with various spectral types, center frequencies and frequency bandwidths are generated in a wave flume based on energy focusing theory. The time series of the wave surface elevation along the flume are obtained by 22 wave probes mounted along the central line of the flume. The characteristics of deep-water wave breaking are analyzed using the spectrum analysis based on the Fast Fourier Transform (FFT). For small center frequency the maximum height of wave surface generated using the Pierson–Moskowitz (P–M) spectrum is produced and the impact of the frequency width is small in wave breaking zone. While the spectral type has a significant impact on the local wave steepness during breaking, the influence of center frequency and frequency width on the local wave steepness is very weak. The significant wave steepness changes significantly after wave breaking, but it remains stable in the upstream or the downstream of wave breaking zone. After wave breaking, the peak frequency remains stable, but the spectrally weighted wave frequency changes significantly. The relationship between the level of downshift and the incident wave steepness is approximately linear. By analyzing the energy spectra, it is found that the energy loses near high frequency of controlling frequencies range and increases near peak frequency during the wave breaking. After wave breaking, the total energy dissipates remarkably with increasing breaking intensity.  相似文献   

2.
The velocity field in breaking water waves is considered in this paper. A numerical simulation describes in detail the transition from a primary overturning and consequent rebounding jets into a bore front, where the vorticity in the coherent large‐scale eddy structures devolves into turbulence. Spatial changes in the frequency spectra of the kinetic energy and the enstrophy are associated with the production, transport and dissipation of the Reynolds stress and the various wave and turbulent mixing length scales. Mean velocity fields and the wave and kinetic energy in a surf zone are evaluated. Fourier and wavelet spectral analysis is applied to study both the surface elevation and energy changes, and the distinction that must be made between spilling and plunging breakers is clarified in this paper. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
An experimental method for simultaneously measuring the velocity fields on the air and water side of unsteady breaking waves is presented. The method includes a novel technique for seeding the air flow such that the air velocity can be resolved in the absence of wind. Low density particles that have large Stokes drag and ability to respond to high-frequency flow fluctuations are used to seed the air flow. Multi-camera, multi-laser particle image velocimetry setups are applied to small-scale unsteady breaking waves, yielding fully time-resolved velocity fields. The surface tension of the fluid is altered and controlled to form spilling breaking waves. Results for the velocity and vorticity fields of representative spilling breakers, which show shedding of an air-side vortex and well-documented generation of water-side vorticity, are presented and discussed.  相似文献   

4.
Free inertia-gravity internal waves in a two-dimensional stratified flow of an ideal fluid with a vertical velocity shear are considered in the Boussinesq approximation. The boundary-value problem for the amplitude of the vertical velocity of internal waves has complex coefficients; therefore, the wave frequency has an imaginary correction and the eigenfunction is complex. It is shown that the wave is weakly damped, the vertical wave momentum fluxes being nonzero and can be greater than the turbulent fluxes. The Stokes drift velocity component transverse to the direction of wave propagation is nonzero and less than the longitudinal component by an order of magnitude. The dispersion curves of the first two modes are cut off in the low-frequency domain due to the influence of critical layers in which the wave frequency taken with the Doppler shift is equal to the inertial frequency.  相似文献   

5.
徐丰  贾复 《实验力学》1999,14(2):136-141
根据在风水槽上波高仪测得的风生波波高时序,讨论了风生短波频谱与水波频率及摩擦风速的关系,通过实验及与他人实验结果的比较,发现风生短波频谱与摩擦风速有幂函数关系,摩擦风速的幂指数并非为常数,实验显示幂指数应是频率的函数(有近似的对数关系).  相似文献   

6.
The Rapid-Distortion-Theory-based analysis proposed by Fernando and Hunt [1] is extended to study the nature of turbulence in and around a density interface sandwiched between turbulent layers with dissimilar properties. It is shown that interfacial motions consist of low-frequency, resonantly excited, nonlinear internal waves and high-frequency, linear internal waves driven by background turbulence. Based on the assumptions that (i) all resonant waves and some nonresonant waves having frequencies close to the resonant frequencies grow rapidly, break, and cause interfacial mixing, (ii) the spectral amplitude of the vertical velocity in the wave-breaking regime is constant, and (iii) kinetic energy is equipartitioned between linear and nonlinear breaking wave regimes, the r.m.s. vertical velocity at the interface and the turbulent kinetic energy flux into the interface are calculated. The migration velocity of the interface is calculated using the additional assumption that the buoyancy flux into a given turbulent layer is a fixed fraction of the turbulent kinetic energy flux supplied to the interface by the same layer. The calculations are found to be in good agreement with the entrainment data obtained in previous laboratory experiments in the parameter regime where the interface is dominated by internal wave dynamics. Received 23 July 1997 and accepted 8 January 1999  相似文献   

7.
Methods based on guided ultrasonic waves are gaining increasing attention for the non-destructive inspection and condition monitoring of multi-wire strands used in civil structures such as prestressing tendons and cable stays. In this paper we examine the wave propagation problem in seven-wire strands at the level of the individual wires comprising the strand. Through a broad-band, laser ultrasonic setup and a time—frequency wavelet transform processing, longitudinal and flexural waves are characterized in terms of dispersive velocity and frequency-dependent attenuation. These vibrating frequencies propagating with minimal losses are identified as they are suitable for long-range inspection of the strands. In addition, the wave transmission spectra are found to be sensitive to the load level, suggesting the potential for continuous load monitoring in the field.  相似文献   

8.
将钢轨波浪形磨耗理想化为三种波长和波深组合的连续谐波激扰,通过多体动力学软件UM,分析不同波长和波深工况下谐波激扰对轮轨接触蠕滑特性的影响。研究表明,当波长固定、波深增大时,钢轨轮对垂向振动加速度和纵向蠕滑率/力的平均值均增大,横向蠕滑率/力平均值均减小。当波深固定、波长增大时,钢轨轮对垂向振动加速度平均值和纵向蠕滑率/力平均值均减小,横向蠕滑率/力平均值均增大。纵横向蠕滑率/力均含有与初始不平顺频率值相接近的特征频率成分,纵向蠕滑率/力特征频率随着波深的增大趋向高频段发展,横向蠕滑率/力特征频率集中在低频段,且随着波深增大逐渐减小。当波深为0.3 mm时,纵横向蠕滑率/力强度相当,能量主要集中在低频,频率比较单一;当波深达到0.6 mm和0.9 mm时,蠕滑率/力以纵向蠕滑率/力为主,表现出多频率特征。在波长相同的条件下,随着运营时间的增加,磨耗量在低频段增加较小,在中高频段增加较大。  相似文献   

9.
This paper reports on a series of numerical simulations designed to investigate the action of wind on steep waves and breaking waves generated through the mechanism of dispersive focusing on finite depth. The dynamics of the wave packet propagating without wind at the free surface are compared to the dynamics of the packet propagating in the presence of wind. Wind is introduced in the numerical wave tank by means of a pressure term, corresponding to the modified Jeffreys' sheltering mechanism. The wind blowing over a strongly modulated wave group due to the dispersive focusing of an initial long wave packet increases the duration and maximal amplitude of the steep wave event. These results are coherent with those obtained within the framework of deep water. However, steep wave events are less unstable to wind perturbation in shallow water than in deep water.Furthermore, a comparison between experimental and numerical wave breaking is presented in the absence of wind. The numerical simulations show that the wind speeds up the wave breaking and amplifies slightly the wave height.The wall pressure during the runup of the steep wave event on a vertical wall is also investigated and a comparison between experimental and numerical results is provided.  相似文献   

10.
Flow kinematics of green water due to plunging breaking waves impinging on a simplified, 3D model structure was investigated in the laboratory. Two breaking wave conditions were tested: one with waves impinging on the vertical wall of the model at still water level, and the other with waves impinging on the horizontal deck surface. The bubble image velocimetry (BIV) technique was used to measure flow velocities. Measurements were taken on both vertical and horizontal planes. Evolution of green water flow kinematics in time and space was revealed and was found to be quite different between the two wave conditions, even though the incoming waves are essentially identical. The time history of maximum velocity is demonstrated and compared. In both cases, the maximum velocity occurs near the green water front and beneath the free surface. The maximum horizontal velocity for the deck impinging case is 1.44C with C being the wave phase speed, which is greater than 1.24C for the wall impingement case. The overall turbulence level is about 0.3 of the corresponding maximum velocity in each wave condition. The results were also compared with 2D experimental results to examine the 3D effect. It was found that the magnitude of the maximum vertical velocity during the runup process is 1.7C in the 3D model study and 2.9C in the 2D model study, whereas the maximum horizontal velocity on the deck is similar, 1.2C in both 3D and 2D model studies.  相似文献   

11.
李翔  张崇伟  宁德志  苏朋 《力学学报》2017,49(5):1042-1049
基于时域高阶边界元方法,建立了完全非线性二维数值波浪水槽,对非周期波浪与直墙的相互作用问题进行了模拟和研究.自由表面满足完全非线性自由水面运动学和动力学边界条件,采用混合欧拉-拉格朗日方法追踪瞬时自由面流体质点,采用四阶Runge-Kutta法对下一时间步的波面和自由面速度势进行更新.采用加速度式法求解直墙表面速度势的时间导数,对瞬时物体湿表面上的水动力压强积分,得到作用在物体上的瞬时波浪力.首先,将全非线性与Serre-Green-Naghdi(SGN)模型的结果进行了对比分析,发现对于大幅值双入射波问题,仅满足弱色散关系的SGN模型大大低估了最大波浪爬高;其次,研究了双入射波与直墙的非线性作用问题,发现线性预报对波浪最大爬高有较大低估,而波浪的非线性成分不只导致了自由面爬高的异常增大,也引起了局部自由面的高频振荡,该物理过程中,直墙所受的波浪载荷,也展示出了与波浪爬高相似的非线性特性;最后,对波浪爬升和波浪力的时间历程进行了频谱分析,发现入射主频波的部分能量传递给了更高频的波浪成分,反映出该问题具有典型的非线性特性.  相似文献   

12.
13.
Measurements of the kinetic energy of turbulence under spilling waves have been analysed using orthogonal wavelets. Data have been collected using 2-D laser Doppler velocimetry for pre-breaking regular waves, generated in a wave tank. The contribution of different scale vortices is computed, and also phase resolved. It is found that micro-vortices (2 mm <l<0.10 m for the tested case) and mid-size vortices (0.10 m<l<4.0 m for the tested case) are generally dominant, carrying more than 70% of the total turbulence energy under the wave crest. The phase resolved energy spectra are computed, which allows the computation of the transverse and of the longitudinal correlations. Published online: 23 November 2002  相似文献   

14.
Estimating rate of evaporation from undisturbed water surfaces to moving and quiet air has been the topic a vast number of research activities. The obvious presence of various shapes of gravity waves on the water body surfaces was the motivation of this experimental investigation. In this investigation experimental measurements have been done to quantify evaporation rate from wavy water surfaces in free, mixed and forced convection regimes. The effects of a wide range of surface gravity waves from low steepness, round shaped crest with slow celerity, to steep and very slight spilling crest waves, on the water evaporation rate have been investigated. A wide range of ${\text{Gr}}/{\text{Re}}^{2} (0.01 \le {\text{Gr}}/{\text{Re}}^{2} \le 100)$ was achieved by applying different air flow velocities on a large heated wave flume equipped with a wind tunnel. Results reveal that wave motion on the water surface increase the rate of evaporation for all air flow regimes. For free convection, due to the effect of wave motion for pumping rotational airflows at the wave troughs and the dominant effect of natural convection for the air flow advection, the maximum evaporation increment percentage from wavy water surface is about 70 %. For mixed and forced convection, water evaporation rate increment is more sensitive to the air flow velocity for the appearance of very slight spilling on the steep wave crests and the leeward air flow structures.  相似文献   

15.
The generation and physical characteristics of inertia-gravity waves radiated from an unstable forced jet at the tropopause are investigated through high-resolution numerical simulations of the three-dimensional Navier–Stokes anelastic equations. Such waves are induced by Kelvin–Helmholtz instabilities on the flanks of the inhomogeneously stratified jet. From the evolution of the averaged momentum flux above the jet, it is found that gravity waves are continuously radiated after the shear-stratified flow reaches a quasi-equilibrium state. The time–vertical coordinate cross-sections of potential temperature show phase patterns indicating upward energy propagation. The sign of the momentum flux above and below the jet further confirms this, indicating that the group velocity of the generated waves is pointing away from the jet core region. Space–time spectral analysis at the upper flank level of the jet shows a broad spectral band, with different phase speeds. The spectra obtained in the stratosphere above the jet show a shift toward lower frequencies and larger spatial scales compared to the spectra found in the jet region. The three-dimensional character of the generated waves is confirmed by analysis of the co-spectra of the spanwise and vertical velocities. Imposing the background rotation modifies the polarization relation between the horizontal wind components. This out-of-phase relation is evidenced by the hodograph of the horizontal wind vector, further confirming the upward energy propagation. The background rotation also causes the co-spectra of the waves high above the jet core to be asymmetric in the spanwise modes, with contributions from modes with negative wavenumbers dominating the co-spectra. Dedicated to the memory of our colleague Dr. Binson Joseph  相似文献   

16.
In this paper, we show how the spectral formulation of Baker, Meiron and Orszag can be used to solve for waves on water of infinite depth confined between two flat, vertical walls, and also how it can be modified to take into account water of finite depth with a spatially varying bottom. In each case, we use Chebyshev polynomials as the basis of our representation of the solution and filtering to remove spurious high‐frequency modes. We show that spectral accuracy can be achieved until wave breaking, plunging or wall impingment occurs in two model problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The evolution of a few large scale high frequency standing internal waves confined to a vertical plane is studied numerically. The growth of nonlinear interactions leads to a transfer of energy toward small vertical scales and lower frequencies: the result is a steep energy decrease due to wave breaking. Induced mixing is evaluated. A parametric forcing is also introduced in order to compare with laboratory experiments. Wave breaking also occurs but as opposed to the unforced case different phases are next observed: internal wave growth due to constructive forcing alternate with energy decrease.  相似文献   

18.
A generalization of the Woodward's theorem is applied to the case of random signals jointly modulated in amplitude and frequency. This yields the signal spectrum and a rather robust estimate of the bispectrum. Furthermore, higher order statistics that quantify the amount of energy in the signal due to nonlinearities, e.g., wave–wave interaction in the case of water waves, can be inferred. Considering laboratory wind generated water waves, comparisons between the presented generalization and more standard techniques allow to extract the spectral energy due to nonlinear wave–wave interactions. It is shown that our analysis extends the domain of standard spectral estimation techniques from narrow-band to broad-band processes. To cite this article: T. Elfouhaily et al., C. R. Mecanique 331 (2003).  相似文献   

19.
The velocity and the rate of decay of a strain wave in a layer of a viscoelastic material rigidly fixed on a solid foundation are determined. The wave structure (ratio of the longitudinal to the transverse displacement) and the profiles of these displacements are analyzed. Attenuation of waves in the first mode is found to be more significant than that in an infinite space. The most intense decay is observed at resonance frequencies. A strong effect of compressibility of the medium on wave parameters is revealed. Conditions at which such a system operates as a waveguide are found. For a loss tangent higher than 0.13 (for an incompressible medium), the character of the dispersion dependence is observed to change drastically: the wave velocity decreases with decreasing frequency. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 104–111, May–June, 2006.  相似文献   

20.
Electromagnetic scattering from large steady breaking waves   总被引:1,自引:0,他引:1  
A submerged hydrofoil generated large steady breaking waves of 0.3 m and 0.4 m height in a circulating water channel. We measured water fraction in the breakers with conductivity probes. We observed the radar cross-section of the breakers at X-band with a pulsed step-frequency instrumentation radar with high spatial resolution in the downstream direction. The normalized radar cross-section increases with increasing elevation angle of observation for both vertical and horizontal polarization. This variation is consistent with a simple interpretation of the breaking wave as a diffuse (Lambertian) surface. However, the observed sizes and shapes of fluid elements in the breakers clearly show that construction of a theory for electromagnetic scattering from first principles will be challenging. We also obtained the velocity spectrum of the scattering features within the breakers. This spectrum indicates that slower moving small liquid elements rather than the faster moving large disturbances are responsible for most of the electromagnetic scattering. Received: 27 January 1999/Accepted: 7 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号