首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Transient numerical simulations of fluid flow and heat transfer over a bank of flat tubes have been carried for both in-line and staggered configurations for the following boundary conditions: (a) isothermal and (b) isoflux. The effect of Reynolds number, Prandtl number, length ratio, and the height ratio, on the Nusselt number, and the dimensionless pressure drop are elucidated. Correlations are proposed for both pressure drop and Nusselt number and optimum configurations have been determined.  相似文献   

2.
 The paper presents the results of an investigation concerning heat transfer and pressure loss in air crossflow of diagonally shaped membrane heating surfaces. The heat and mass transfer analogy by means of naphthalene sublimation technique is used in order to evaluate mean Nusselt number values in such tube banks. The effect of tube bank arrangement on heat transfer coefficients and flow resistance is discussed. Convective heat transfer and pressure loss characteristics of diagonally shaped membrane tube banks, plain tube banks and ordinary membrane tube banks are compared. Received on 15 June 2000 / Published online: 29 November 2001  相似文献   

3.
In desalinization devices and some heat exchangers making use of low-quality heat energy, both wall temperatures and wall heat fluxes of the heated tubes are generally quite low; hence they cannot cause boiling in flooded tube-bundle evaporators with common large tube spacing. However, when the tube spacing is very small, the incipient boiling in restricted spaces can generate and results in higher heat transfer than that of pool boiling at the same heat flux. This study investigated experimentally the effects of tube spacing, positions of tubes and test pressures on the boiling heat transfer of water in restricted spaces of the compact in-line bundles consisting of smooth horizontal tubes. The experimental results show that tube spacing and tube position have significant effects on the boiling heat transfer in a compact tube bundle. There is an optimum tube spacing that provides the largest heat transfer coefficient at the same heat flux.  相似文献   

4.
A new program for simulation and optimization of the shell-and-tube heat exchangers is prepared to obtain useful results by employment of the computing technology fast and accurately. As an application of this program, the effects of transverse and longitudinal tube pitch in the in-line and staggered tube arrangements on the Nusselt numbers, heat transfer coefficients and thermal performance of the heat exchangers were investigated. The obtained values of the tube pitch were compared with literature values.  相似文献   

5.
Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0–16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.  相似文献   

6.
PIV measurement of the vertical cross-flow structure over tube bundles   总被引:1,自引:0,他引:1  
Shell and tube heat exchangers are among the most commonly used types of heat exchangers. Shell-side cross-flow in tube bundles has received considerable attention and has been investigated extensively. However, the microscopic flow structure including velocity distribution, wake, and turbulent structure in the tube bundles needs to be determined for more effective designs. Therefore, in this study, in order to clarify the detailed structure of cross-flow in tube bundles with particle image velocimetry (PIV), experiments were conducted using two types of model; in-line and staggered bundles with a pitch-to-diameter ratio of 1.5, containing 20 rows of five 15 mm O.D. tubes in each row. The velocity data in the whole flow field were measured successfully by adjusting the refractive index of the working fluid to that of the tube material. The flow features were characterized in different tube bundles with regards to the velocity vector field, vortex structure, and turbulent intensity.  相似文献   

7.
Wing-type vortex generators for fin-and-tube heat exchangers   总被引:3,自引:0,他引:3  
The effect of wing-type vortex generators on heat transfer and pressure drop of a fin-and-tube heat exchanger element was investigated. Local heat transfer was measured by liquid crystal thermography on the fin in the Reynolds number range of 600–2700. Flow losses were estimated from the measured pressure drop of an element. Delta winglets were used as vortex generators. Four fin-and-tube configurations were tested, an inline and a staggered arrangement, each with plain fins and with fins with a pair of vortex generators behind each tube. For the inline tube arrangement the vortex generators increase the heat transfer by 55–65% with a corresponding increase of 20–45% in the apparent friction factor. Results indicate that the vortex generators have the potential to reduce considerably the size and mass of heat exchangers for a given heat load.  相似文献   

8.
This paper is concerned with the results of numerical calculations for transient flow in in-line-square and rotated-square tube banks with a pitch-to-diameter ratio of 2:1, in the Reynolds number range of 30–3000. Transient-periodic behaviour is induced by the consideration of two or more modules, with a sinusoidal span-wise perturbation being applied in the upstream module. There is a triode-like effect, whereby the downstream response to the stimulus is amplified, and there is a net gain in the crosswise flow component. When an appropriate feedback mechanism is provided, a stable transient behaviour is obtained, with alternate vortices being shed from each cylinder. Flow visualization studies of the results of the calculations are presented together with quantitative details of pressure drop, lift, drag and heat transfer. For the staggered bank, a wake-switching or Coanda effect was observed as the serpentine-shaped wake attached to alternate sides of the downstream cylinder. The induced response is independent of the amplitude and frequency of the applied disturbance, including the case of spontaneous behaviour with no excitation mechanism. For the in-line case where each cylinder is in the shadow of the previous one, the motion is less pronounced; however, a shear-layer instability associated with the alternating spin of shed vortices was observed. In this case, the response was found to be somewhat dependent on the frequency of the applied disturbance, and a transient motion could not be induced spontaneously in the absence of an explicit feedback mechanism. Calculated Strouhal numbers were in fair agreement with experimental data: for the staggered geometry, they had values of between 0·26 and 0·35, or from −21 to +6% higher than measured values, while for the in-line geometry, the Strouhal numbers ranged between 0·09 and 0·12, or about 20–40% lower than experimental values.  相似文献   

9.
Spirally fluted tubes are used extensively in the design of tubular heat exchangers. In previous investigations, results for tubes with flute depths e/Dvi < 0.2 were reported, with most correlations applicable for Re ≥ 5000. This paper presents the results of an experimental investigation of the heat transfer and pressure drop characteristics of spirally fluted tubes with the following tube and flow parameter ranges: flute depth e/Dvi = 0.1−0.4, flute pitch p/Dvi = 0.4−7.3, helix angle θ/90° = 0.3−0.65, Re = 500−80,000, and Pr = 2−7. The heat transfer coefficients inside the fluted tube were obtained from measured values of the overall heat transfer coefficient using a nonlinear regression scheme. The friction factor data obtained consisted of 507 data points. The proposed correlation for the friction factor predicts 96% of the database within ±20%. The heat transfer correlation for the range 500 ≤ Re ≤ 5000 predicts 76% of the database (178 data points) within ±20%, and the correlation for the higher Re range predicts 97% of the 342 data points within ±20%. Comparison of heat transfer and friction data show that these tubes are most effective in the laminar and transition flow regimes. The present results show that the increase of flute depth in the range considered does not improve heat transfer.  相似文献   

10.
The present paper is part of a research program on two-phase flows and heat transfer studies in tube bundles. An experimental study was carried out to analyse the void fraction for vertical two-phase flows. Boiling across a horizontal tube bundle for three hydrocarbons (n-pentane, propane and iso-butane) under saturated conditions is investigated. The experiments were performed on a tube bundle with 45 plain copper tubes of 19.05 mm outside diameter in a staggered configuration with a pitch to diameter ratio of 1.33. An optical probe has been developed to determine the local void fraction at the minimum cross section between the tubes.  相似文献   

11.
Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (α<0.02). Liquid and gas velocity data in the whole flow field were measured successfully by optical filtering and image processing. The structures of bubbly flow in the two different configurations of tube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.  相似文献   

12.
Zusammenfassung Der Druckverlauf und der Stoffübergang entlang einzelner Profilrohre mit Oval-, Lanzetten- und Rautenquerschnitt wurde experimentell untersucht. Der Stoffübergang wurde dabei durch Messung der Diffusionsrate von Naphthalin an Rohren aus Naphthalin ermittelt. Des weiteren wurden der lokale und mittlere Stoffübergang sowie der Druckverlust in versetzt angeordneten zehnreihigen Profil-Rohrbündeln untersucht. Die Versuchsergebnisse werden mit Hilfe halb-empirischer Beziehungen für den Impuls-und Stofftransport beschrieben.
Mass transfer and pressure drop in cross flow tube banks with staggered profile tubes
The pressure distribution and the mass transfer rate along single profile tubes with lanceolate, oval- and diamond-shaped cross-section have been experimentally investigated. The mass transfer rate has been determined by measuring the diffusion rate of naphthalin in air on special tubes made of naphthalin. Furthermore, the local and mean mass transfer rate as well as the pressure drop characteristics of arrays with 10 rows have been determined. The experimental results are described with the aid of semi-empirical relations for the momentum and mass transport.


Herrn Prof. Dr.-Ing. U. Grigull zum 80. Geburtstag gewidmet  相似文献   

13.
The flow patterns and heat transfer coefficients of R-22 and R-134a during evaporation in small diameter tubes were investigated experimentally. The evaporation flow patterns of R-22 and R-134a were observed in Pyrex sight glass tubes with 2 and 8 mm diameter tube, and heat transfer coefficients were measured in smooth and horizontal copper tubes with 1.77, 3.36 and 5.35 mm diameter tube, respectively. In the flow patterns during evaporation process, the annular flows in 2 mm glass tube occurred at a relatively lower vapor quality compared to 8 mm glass tube. The flow patterns in 2 mm glass tube did not agree with the Mandhane’s flow pattern maps. The evaporation heat transfer coefficients in the small diameter tubes (d i  < 6 mm) were observed to be strongly affected by tube diameters, and to differ from those in the large diameter tubes. The heat transfer coefficients of 1.77 mm tube were higher than those of 3.36 mm and 5.35 mm tube. Most of the existing correlations failed to predict the evaporation heat transfer coefficient in small diameter tubes. Therefore, based on the experimental data, the new correlation is proposed to predict the evaporation heat transfer coefficients of R-22 and R-134a in small diameter tubes.  相似文献   

14.
The influence of test section orientation and diameter on flow boiling crisis occurring in tubes has been studied experimentally using Freon-12 as a coolant. At low mass flux the critical heat flux (CHF) was lower in horizontal flow than in vertical. As either the liquid or vapour velocity, or both, were increased the vertical and horizontal CHF results converged. Above a mass flux of 4Mg · m−2 · s−1 the results were essentially identical.

The effect of tube diameter on boiling crisis in general depends crucially on the parameters which are maintained constant when the comparison is made.  相似文献   


15.
A new type of tube is introduced that has a three-dimensional internally extended surface used to enhance convective heat transfer inside the tube. Results are presented from experimental investigations into heat transfer performance in seven copper tubes of about 13.5 mm I.D. with three-dimensional internally extended surfaces (3-DIESTs) varying in axial pitch, circumferential pitch, height, width, and fin arrangement. The heat transfer and pressure drop characteristics of ethylene glycol flowing in the 3-DIESTs were tested in the Re range 250–7000 and Pr range 60–90. The average Stanton number in the most superior 3-DIEST can be increased by about 2.8-fold in laminar flow and 4.5-fold in transitional and turbulent flow compared with that in the smooth tube. The corresponding friction factor is 1.7-fold as high in laminar flow and fourfold in transitional and turbulent flow inside the 3-DIEST compared to that inside a smooth tube. The correlations of heat transfer and friction factor are obtained separately in the different flow regions that can be used in practical design.  相似文献   

16.
A finite element method is used to solve the full Navier-Stokes and energy equations for the problems of laminar flow and heat transfer characteristics of air around three isothermal heated horizontal cylinders in a staggered tube bank and around four isothermal heated horizontal cylinders in an in line tube bank. The variations of surface shear stress, pressure and Nusselt number are obtained over the entire cylinder surface, including the zone beyond the separation point. The predicted values of total drag, pressure drag and friction drag coefficients, average Nusselt number, and the plots of velocity flow fields and isotherms are also presented.  相似文献   

17.
An experimental investigation was performed to compare the boiling heat transfer coefficients and two-phase pressure drops from a square inline and a staggered tube bundle having the same tube pitch-to-diameter ratio (P/D = 1.30) and from two square inline tube bundles having different pitch-to-diameter ratios (P/D = 1.30 and 1.70). Except at the highest heat fluxes the heat transfer coefficients generally were higher in the staggered tube bundle than in the inline tube bundle and higher in the larger P/D tube bundle than in the smaller. As the heat flux increased, the differences decreased. The differences were attributed to the tradeoff between nucleation and convection. The staggered tube bundle had higher pressure drops than the inline bundle except at low mass velocities; the larger pressure drop in the staggered bundle was attributed to the combination of a larger void fraction and a larger friction multiplier, with the frictional component dominating at higher mass velocities. Comparing the inline tube bundle pressure drops, it was concluded that the larger P/D bundle had a larger void fraction than the smaller P/D tube bundle; no conclusions could be drawn regarding the relative magnitude of the two-phase fraction multiplier.  相似文献   

18.
The local heat transfer coefficients on the shell-side of shell-and-tube heat exchangers for in-line tube arrangement are visualized and determined from mass transfer measurements. The mass transfer experiments are carried out using a technique based on absorption, chemical and coupled colour reaction. Local mass transfer coefficients are measured for fully developed flow conditions on each tube surface. These coefficients were transformed to heat transfer coefficients by employing the analogy between heat and mass transfer. The averaged heat transfer coefficients and the pressure drop are compared with the predictions from the literature. Received on 2 May 1997  相似文献   

19.
An experimental study was performed to determine the melting heat transfer characteristics along a horizontal heated circular tube immersed in a solid-air-liquid three-phase fluidized liquid ice bed. A mixture of fine ice particles and ethylene glycol acqueous solution was adopted as the liquid ice for the test. Measurements were carried out for a range of parameters such as airflow rate, heated tube diameter, and initial concentration of acqueous binary solution. It was found that the heat transfer coefficient for the fluidized liquid ice bed might be more than 20 times as large as that for the fixed liquid ice bed.  相似文献   

20.
Heat transfer with steam condensation under moderate pressure on the surface of a horizontal tube immersed in a bubbling layer was experimentally investigated. A copper test section 16 mm in outer diameter and 400 mm in length was placed in a bubbling column 455 mm in diameter. Experiments were made under pressures of 0.14–0.8 MPa, with void fraction 0.04–0.23, vapor superficial velocities 0.05–0.42 m/s, liquid-wall temperature differences 47–105 K, and heat flux densities 0.12–0.8 MW/m2. The heat transfer process in the bubbling layer is shown to be of a high intensity: with moderate values of steam content, heat transfer coefficients reach 12–14 kW/(m2 · K). Data obtained showed that the known correlations do not consider the influence of pressure on heat transfer. For the first time, data on radial steam content distribution under pressures higher than atmospheric were obtained by an electroprobe method. A table of experimental data is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号